誘電分散法を用いた線維柱帯の電気生理学的特定

渡辺 牧夫,松岡 里佳,目代 康子,上野 脩幸

高知医科大学眼科学教室

線維柱帯の誘電挙動を眼球外から非侵襲的に観察し, 線維柱帯における房水排出機能を定量的に評価すること を目的として,白色家兎11匹,摘出22眼球の前眼部組 織インピーダンスを微小同心円状表面電極を用いて測定 した.前眼部5か所の連続測定では,角膜輪部から0.5 mm強膜側で loss tangent 上のピーク値が角膜上と比 較し有意に低下(p<0.01,対応のあるt検定)した.同部 における loss tangent ピーク値の低下は,直下に存在す

要 約

る線維柱帯の微細構造を反映した分散現象のブロード化 によるものと考えられた.角膜・結膜上皮を剝離後に同 様の測定を行っても、やはり同部で loss tangent ピーク 値は最低となり、本法により線維柱帯が電気生理学的に 特定可能であった.(日眼会誌 102:265-269,1998)

キーワード:開放隅角緑内障,線維柱帯,誘電分散,組織 インピーダンス,誘電正接

Electrophysiological Specification of Trabecular Meshwork by Dielectric Dispersion Method

Makio Watanabe, Rika Matsuoka, Yasuko Mokudai and Hisayuki Ueno

Department of Ophthalmology, Kochi Medical School

Abstract

In an attempt to observe the dielectric behavior of the trabecular meshwork and to estimate its pumping of aqueous humor quantitatively, we measured tissue impedance of the anterior portion of 22 enucleated eyeballs from 11 rabbits non-invasively with a minute coaxial surface probe. Serial measurements of five points near the limbus revealed a significant decrease of the peak value (p<0.05, paired ttest) on loss tangent function at a point 0.5 mm from the limbus towards the sclera. We considered that the decrease in the peak value at the point was due to broadening of the dielectric dispersion reflecting the microstructure of trabecular meshwork beneath the point. After removing the corneal epithelium, the limbal epithelium, and the conjunctiva, we also observed a decrease in the peak value at the same point, which reinforced our assumption that we can identify the trabecular meshwork electrophysiologically by means of dielectric dispersion. (J Jpn Ophthalmol Soc 102:265-269, 1998)

Key words: Open angle glaucoma, Trabecular meshwork, Dielectric dispersion, Tissue impedance, Loss tangent

I 緒 言

緑内障は閉塞隅角型と開放隅角型に大別され,臨床的 に後者の方の有病率が高く,また最近では,開放隅角型で も正常眼圧緑内障の重要性が注目されている¹⁾.開放隅角 緑内障の原因は,主として線維柱帯における前房水の排 出不全と考えられ,その診断は,通常は眼底検査により視 神経乳頭部の形状変化を観察し,眼圧・視野などの補助 的諸検査を参考にしてなされることが多い.しかし,開放 隅角緑内障の本質ともいえる線維柱帯の房水排出機能の 低下を調べるためには,眼球に一定時間重りを載せて眼 圧の変化率を調べる,いわば古典的方法が用いられてい るのみで,線維柱帯の機能を定量的・合理的に評価する 方法は未だ確立されていない.また,緑内障に対する電気 生理学的研究では,毛様体上皮における房水産生機能に 関する報告²³⁰があるが,線維柱帯の房水排出機能に関す る報告はみあたらない.そこで今回,我々は組織インピー ダンス測定⁰という電気生理学的手法を用いて,線維柱帯 における房水排出機能を定量的に評価することを試み た.

生体組織のインピーダンスは著しい周波数依存性を示 し,組織を構成する細胞の電気的性質を反映する.広い周

別刷請求先:783-8505 高知県南国市岡豊町小蓮 高知医科大学眼科学教室 渡辺 牧夫 (平成9年7月25日受付,平成9年12月1日改訂受理) 265

Reprint requests to: Makio Watanabe, M.D. Department of Ophthalmology, Kochi Medical School. Kohasu, Oko-Cho, Nankoku-shi, Kochi-ken 783–8505, Japan

⁽Received July 25, 1997 and accepted in revised form December 1, 1997)

波数範囲にわたる組織インピーダンスの測定から,組織 やそれを構成する細胞の,電気を蓄える性質,電気を通過 させる性質という二面性に関する多くの情報を知ること ができる.こうした手法を用いて,生体組織の周波数依存 性を調べ,生理的・病的な変化に伴う電気現象の変化を 解析する方法を誘電分散法と呼ぶ.我々は誘電解析理論 に基づく電気生理学的手法の眼部組織への適用を主体に 研究を進めており⁵⁶,本研究では,過去に蓄積してきた誘 電測定・解析技術を駆使し,線維柱帯の房水拙出機能を 眼球外から非侵襲的に捕えることを目的とする.

Ⅱ 方 法

1. 電極の作製

測定電極としては,水晶体や角膜など眼部組織で我々 に使用経験があり⁶¹⁷,電極の特性が既知で,生体組織で の測定に適している同心円状表面電極が良いと考えられ た.今回,ステンレス製20ゲージ注射針を改造した外径 約0.9mmの針型微小同心円状表面電極を試作し,誘電 測定に用いた.図1に同電極の概略を示す.

2. 実験材料

白色家兎の摘出眼球を材料とし,11匹22眼を誘電測 定に供した.5匹10眼は無処置の摘出眼球(以下,正常眼 球)のまま用いた.家兎眼球には鼻側に瞬膜があるため, 10眼では上側と耳側の角膜輪部付近5か所の誘電測定 を連続的に行った(図2).また,1匹2眼では前房水を同 量の空気に置換したのち測定し,5匹10眼では角膜上皮 ・輪部上皮・結膜・テノン囊を機械的に剝離する前後に 誘電測定を行った.すべての実験は眼球摘出後1時間以 内に終了し,正常眼球のうち4眼は光学的顕微鏡下でへ マトキシリン・エオジン(HE)染色により組織学的に検 討した.

3. 誘電測定

微小同心円状表面電極を用いて眼球面に直接接触させ る方法で,角膜輸部付近の5か所の誘電測定を行った.測 定には Hewlett Packard 社製インピーダンス・アナラ イザ(HP-4194 A)を用い,10 kHz~100 MHz の周波数域 にわたり,一対のキャパシタンスとコンダクタンスを測 定し,イオン交換水,空気,塩化カリウム(KCl)標準液の 測定からセル定数を決め,これを誘電率(ε)と導電率(κ) に変換した.測定時のオッシレート・ポテンシャル(測定 電圧)は 0.5 V とし,対数1 刻み当たり 20 点,合計 101 周 波数点の所要測定時間は約 40 秒であった.

4. データ解析

インピーダンスは複素数で表される. 複素誘電率(ϵ^*) は $\epsilon^* = \epsilon' - j\epsilon'', \kappa = \epsilon'' \cdot \omega \cdot \epsilon$ 、で示され、 にこで $j^2 = -1$ 、 ϵ' は誘電率実数部、 ϵ'' は誘電率虚数部、 ω は角周波数、 ϵ 、 は真空の絶対誘電率(8.8541×10⁻¹⁴F/cm)[†], 測定データ の解析は $\epsilon \ge \kappa \varepsilon$ loss tangent[®]に変換した上で行った. Loss tangent 表示に当たっては、電極分極の影響を減じ

図1 微小同心円状表面電極の模式図.

輪状電極は外径約0.9 mm でステンレス製,中心電極は 直径約0.2 mm で真鍮製.両者間はエポキシ系の樹脂で 絶縁.1.5 m のケーブルを介して,HP-4194 A のZプ ローブに接続.

図2 家兎前眼部の測定部位.

電極の中心が角膜輪部から角膜側約 0.5 mm の部位(①) から,図のように連続的かつ互いに重ならないように約 0.5 mm おきに 5 か所のインピーダンスを測定. ①:電極の中心が輪部から角膜側約 0.5 mm

2:	"	輪部上(0 mm)
3:	"	輪部から強膜側約 0.5 mm
④:	"	* 1.0 mm
(5):	"	* 1.5 mm

るために、10 kHz の導電率の値を低周波収斂値(κ_i)とし て誘電損失(ϵ " = ($\kappa - \kappa_i$)/ $\omega \cdot \epsilon_v$)を求め、これを基に loss tangent(ϵ "/ ϵ ')を計算した.

III 結 果

1. 正常角膜の誘電挙動

図3aに正常眼球角膜周辺部(図2,①の部)の誘電挙 動を示す.10kHz~100 MHzの広い周波数域にわたりイ ンピーダンスを測定すると,組織の示す誘電率は周波数 とともに低下し,導電率は反対に増加する誘電分散現象 が認められた.同じデータを loss tangent 表示したもの が図3bである.図に示すように,loss tangent 上では10 MHz付近にピークを持つ山となり,低周波側に電極分極 の影響が若干認められた(図3b,30 kHz 以下).

2. 房水の空気置換

今回の研究では角膜輪部付近の誘電測定から,眼球内 部の線維柱帯の誘電挙動を特定することを目的としてお

黒塗りのシンボルは正常状態,白抜きのシンボルは空気 置換後の測定結果.

り,本電極を用いての測定で,線維柱帯部にまで測定時に 電気力線が到達する必要がある.それを確認するため,前 房水を空気に置換する前後の①の部の測定を行った結 果を図4に示す.図から明らかなように,房水の空気置換 の結果,特に高周波側(5 MHz 以上)の導電率が著明に低 下した.

3. 前眼部5か所の連続測定

図2に示した前眼部5か所を連続測定した結果の典型 例を図5に示す.電極の中心が,角膜輪部より0.5mm角 膜側(図2,①の部)から強膜側に移動するに従い,分散現

図5 前眼部5か所の連続測定(典型例).

●:1,◇:2,△:3,□:4,▼:5,1~5は図2の
①~5に相当.

図6 Loss tangent ピーク値と測定部位の関係. 10 眼の耳側,上側の5か所をそれぞれ測定し,角膜輪部 からの距離とloss tangentピーク値の関係を調べたもの. ●:耳側, ■:上側. P<0.01

象のブロード化を認め, loss tangent 上のピーク値は低下し, 輪部から 0.5 mm 強膜側 (図 2, ③ の部) で最低値となり, その後, 反対にピーク値は増大した. 図 6 に電極中心の輪部からの距離と loss tangent ピーク値の関係をプロットした. ここでは 10 眼の上側および耳側の平均値 ±標準偏差について示す. 上側一耳側間では loss tangent ピーク値に差を認めなかったが, 上側, 耳側とも③ の部では ① の部と比較し, loss tangent ピーク値が有意に低かった (p<0.01, 対応のある t 検定).

4. 光学的顕微鏡による組織学的検討

白色家兎摘出眼球の光学的顕微鏡像(HE 染色)を図7 に示す.家兎の前房隅角の構造はヒトとは若干異なる⁹⁹. 図7aの低倍像の切片では,隅角部は前櫛靭帯でFontana 腔と仕切られ,Fontana 腔自体も隔壁で2つに分割 されており,その角膜寄りに線維柱帯が認められた.ま た,別の切片の高倍像(図7b)では網目状の線維柱帯が 明瞭に観察され,ヒトではシュレム管に相当する静脈叢 の一部が強膜側に認められた.

図7 家兎前房隅角の光学的顕微鏡所見. a: ヘマトキシン・エオジン(HE) 染色切片低倍像, バー は 30 μm, b: HE 染色切片高倍像, バーは 10 μm F: Fontana 腔, TM:線維柱帯, 矢じり:静脈叢

図8 上皮剝離の影響.

5. 結膜・角膜上皮剝離の影響

結膜・角膜上皮剝離を作る前後の誘電測定の結果を図 8 に示す.上皮剝離を行うと, loss tangent ピークの絶対 値が著明に増大し(図略), 同一スケールでの比較が困難 になるため, ここでは角膜上の①の部の値を基に標準化 したデータを示す.図8のごとく, 上皮系の影響を除いて も loss tangent ピーク値は③の部で最低となった.

IV 考 按

図3で示したように,今回試作した微小同心円状表面 電極による測定でも、従来用いてきた大型の同心円状表 面電極677とほぼ同様の誘電分散現象を認めることができ た.故に本電極は小さいながらも実用可能と考えられる. また、房水の空気置換実験で明らかとなったように、房水 の空気置換の結果,特に高周波側の導電率が著明に低下 したことは(図4)測定時に電気力線が前房水中にまで到 達し、空気によって絶縁されたためと考えられる.このこ とから、本電極により隅角深部にある線維柱帯の誘電挙 動が観察可能であると考えられた.本研究では如何にし て眼球外からの測定で観察可能なはずの,すなわち測定 データの中に含まれているはずの線維柱帯の誘電挙動を 特定するかが最大の問題となる.図3bでは測定データ を loss tangent で表示したが,この loss tangent は交流 電場中でのエネルギー消費の指標となるもので,眼部組 織の誘電分散現象を整理する上で有用な関数であること を我々は既に報告^{6/7)10}している.Loss tangent上では組 織の電気を遮る働きが強いほど,すなわち組織を構成す る細胞が密に存在し、細胞の脂質2重層が丈夫であり、ま た、細胞形が球形に近くサイズが均一であるほどピーク 値が高くなる性質を持っている.

光学的顕微鏡所見から(図7),線維柱帯は角膜輪部か ら強膜側 0.5 mm の直下に存在し,同部での loss tangent ピーク値が輪部付近 5 か所の中で最小であったこ とは, loss tangent が線維柱帯の構造的特徴を捕えたた めと考えられる.線維柱帯は複雑な網の目構造を持ち,構 成細胞は球形からほど遠く,サイズも均一とはいえない ため,そうした構造が組織インピーダンスに反映される ならば, loss tangent ピーク値の低下は極めて合理的な 結果といえる.上側と耳側の比較では大きな差を認めな かったことから, 白色家兎の線維柱帯は, 上側と耳側で角 膜輪部からの距離に 0.5 mm 以上の差を認めないと考え られた.

今回の測定は,眼球外から表面電極を角結膜上皮に接 触させて行っているため,これらの上皮の性状が測定結 果に影響を及ぼしている可能性がある.角膜輪部上皮は 角膜上皮の幹細胞と考えられており,角膜上皮や結膜上 皮とは異なる電気的性質を示す可能性を持ち,また,結膜 下にはテノン囊などの結合組織が存在し,それらが誘電 挙動に影響を与える可能性を調べるために上皮剝離実験 を行った.図8のごとく,これらの上皮系の影響を除いて 測定しても輪部から0.5 mm 強膜側の直上で loss tangent のピーク値が最低となった.一般に上皮系には細胞 が密に存在しており,電気力線を遮る力が強いと考えら れる.剝離後の測定では,前述のごとく全体的に loss tangent ピーク値が大きくなったが,これは上皮剝離によっ て導電率の増分が大きくなったためと考えられる.また, 剥離前と比較し、①~⑤の部位でのピーク値の変動が大きいことは、上皮剝離により測定時の電気力線が十分に 深部に到達し、線維柱帯の微細構造をより反映しやすくなったためと考えられる.上皮系の影響を除いて測定しても、輪部から0.5 mm強膜側の直上でloss tangentの ピーク値が最低となることは、やはり同部での測定が線 維柱帯の誘電挙動を反映するという考えを支持する.

以上,示してきたように,微小同心円状表面電極を用い て眼球外から家兎前眼部の組織インピーダンスを測定す ることにより,線維柱帯の誘電挙動を電気生理学的に特 定することが可能であった.今回我々が得た情報は,主と して線維柱帯の極めて特徴的な微細構造に由来するもの と考えられる.誘電分散法を用いて線維柱帯の房水排出 機能を定量的に評価する方法としては,線維柱帯の場所 の特定だけでなく,房水排出に伴う線維柱帯の微細構造 の変化や,高い導電率を持つ房水が線維柱帯の網の目を すり抜けるため生じる未知の変化を捕えるなどの可能性 が考えられる.今後は,眼圧の変化や実験的緑内障に伴う 線維柱帯部の誘電挙動の変化を観察し,さらに多くの房 水排出機能に関わる情報を集め,非侵襲的・定量的に房 水排出機能を検知する方法を検討していきたい.

本論文の要旨は,第100回日本眼科学会総会において発表 した.なお,本研究は平成7年度文部省科学研究補助金 (No.07771539)の補助を受けた.

文 献

 塩瀬芳彦:日本における緑内障疫学共同調査結果 (1988-1989年).(財)日本失明予防協会,東京,1989.

- Cole DF : Electrochemical changes associated with the formation of the aqueous humour. Br J Ophthalmol 45 : 202-217, 1962.
- 3) Krupin T, Reinach PS, Candia OA, Podos SM: Transepithelial electrical measurements on the isolated rabbit iris-ciliary body. Exp Eye Res 38: 115-123, 1984.
- 4) 入交昭彦,渡辺牧夫:生体組織・細胞の誘電解析. 病態生理 11:372-378, 1992.
- 5) Watanabe M, Suzaki T, Irimajiri A : Dielectric behavior of the frog lens in the 100 Hz to 500 MHz range. Simulation with an allocated ellipsoidalshells model. Biophys J 59: 139-149, 1991.
- 6) 目代康子,渡辺牧夫,安藤元紀,上野脩幸:家兎角膜の誘電挙動一上皮障害の定量化および治癒過程の追跡.日眼会誌 98:215-223,1994.
- 7) 渡辺牧夫,目代康子,上野脩幸,安藤元紀,入交昭彦: 表面電極による家兎角膜の誘電測定.日限会誌 97: 569-574,1993.
- Surowiec A, Stuchly SS: Use of the loss-tangent function in dielectric spectroscopy. Bioelectromagnetics 7:259–269, 1986.
- 9) Tripathi RC: Comparative physiology and anatomy of the aqueous outflow pathway. In: Davson H, et al(Eds) : The Eye. vol 5. Academic Press, New York, 163—356, 1974.
- 渡辺牧夫, 洲崎敏伸, 玉井嗣彦:水晶体の誘電挙動と 実験的白内障に伴う変化. あたらしい眼科 6: 283-289, 1989.