正常ラット水晶体の殻付き回転楕円体モデルによる誘電理論解析

渡辺 牧夫,松岡 里佳,清家 恭三,目代 康子,上野 脩幸

高知医科大学眼科学教室

約

要

Wistar 系ラット摘出水晶体の交流アドミッタンスを 100 Hz~500 MHz の周波数域にわたり測定した.電極 分極のアーティファクトを最小限にするため,測定は平 行板コンデンサー型測定セルを用い,白金黒でコートし た白金電極で摘出水晶体を直接挟みこむ形で行い,測定 データを誘電率と導電率に変換した.ラット正常水晶体 は 10[®]に及ぶ巨大な誘電率増分を持ち,2 kHz(低周波側 一分散 1)と2 MHz(高周波側一分散 2)付近に緩和周波 数をもつ 2 つの誘電分散が認められた.この分散現象 は,loss tangent 表示することにより明確な 2 つのピー クとして示された.コンピュータを用いた誘電理論解析 にあたり,水晶体線維細胞の一つ一つを回転楕円体に見 立て,濃厚系一定配列殻付き回転楕円体理論を用い,水晶 体線維配列を考慮した等価回路を併用して解析すること により、2つの分散の起源を検討した.その結果、分散1 は皮質水晶体線維が電場に対して主に平行に配列する部 位、すなわち皮質赤道部に由来し、分散2は皮質水晶体 線維が主に垂直に配列する皮質両極部と、複雑な構造を 示す核部水晶体線維の分散が合成されたものと考えられ た.今回の理論計算の結果により、ラット水晶体の分散の 主成分は、分散1・分散2とも生体膜に由来する、いわゆ る"β分散"であることが示された.(日眼会誌 102:555 -560、1998)

キーワード: ラット水晶体,インピーダンス,誘電分散, 水晶体等価回路,殻付き回転楕円体モデル

Theoretical Impedance Analysis of the Intact Rat Lens with an Ellipsoidal-shells Model

Makio Watanabe, Rika Matsuoka, Kyozo Seike, Yasuko Mokudai and Hisayuki Ueno Department of Ophthalmology, Kochi Medical School

Abstract

We measured a.c. admittances for isolated rat lenses over a wide frequency range of 100 Hz to 500 MHz. In order to evade electrode polarization at low frequencies, we examined extracted lenses by direct semi-squeezing with Pt black-coated platinum electrodes. This gave rise to a 10⁶ increment in permittivity at low frequencies, and two distinct dielectric dispersions were exhibited; *dispersion 1* with a characteristic frequency (fc) of 2 kHz, and *dispersion 2* with an fc of 2 MHz. In terms of loss tangent function, the two dispersions clearly dominated as two peaks. By curve fitting analysis with an allocated ellipsoidal-shells model based on ultrastructural features of the lens with a lens equivalent circuit, *dispersion 1* was assigned to the equatorial cortex where regularly arranged lens fibers ran parallel to the applied electric field, and *dispersion 2* to the nucleus of complicated fibers, combined with the polar cortex where lens fibers ran perpendicular to the electric field. Our results suggested that both lens dispersions were β -*dispersions* attributable to bio-membranes. (J Jpn Ophthalmol Soc 102:555-560, 1998)

Key words: Rat lens, Impedance, Dielectric dispersion, Lens equivalent circuit, Ellipsoidal-shells model

I 緒 言

水晶体は特異的な組織構造を示す.その透明性を維持

するための機構が破綻した時,不可逆性の混濁,すなわ ち,白内障を生じる.白内障は眼科領域にとどまらず多く の研究者の興味の対象となっているが,これまでの研究

別刷請求先:783-8505 高知県南国市岡豊町小蓮 高知医科大学眼科学教室 渡辺 牧夫 (平成10年2月19日受付,平成10年4月16日改訂受理)

Reprint requests to: Makio Watanabe, M.D. Department of Ophthalmology, Kochi Medical School. Kohasu, Okocho, Nankoku-shi, Kochi-ken 783-8505, Japan

(Received February 19, 1998 and accepted in revised form April 16, 1998)

は組織形態学的¹¹,あるいは生化学的²¹なものがほとんど であった.その発生メカニズムの全体像をつかむために は,全く異なった視点からのアプローチも有用と思われ る.我々は,電気生理学的・生物物理学的な観点から水晶 体混濁の発生機序の解明に貢献することができると考 え,ラット摘出水晶体を材料として,インピーダンス特性 を調べ,誘電分散理論に基づくモデル解析を行った.

水晶体混濁(白内障化)のメカニズムを生物物理学的側 面から論じるためには,現象面での誘電挙動の変化を捕 えるのみでは十分とはいえず,誘電理論解析を行い,細胞 レベルでのインピーダンスに関わる微小環境の変化を証 明する必要がある.そのため,本報では誘電分散理論に基 づき,濃厚系一定配列殻付き回転楕円体モデルの理論式 を用い,正常水晶体に対して水晶体等価回路を併用した 誘電解析を行い,水晶体の示す2つの分散の起源を推測 し,正常状態の水晶体線維細胞の膜相や,内外液相の電気 的パラメータを推定した.ここで,膜相とは線維細胞の細 胞膜を,内外液相とは細胞外液と細胞質を意味する.

我々の用いた方法(誘電分散法)によれば,直接細胞を 破壊することなく,非侵襲的に水晶体の誘電特性,特に細 胞膜に関する多くの情報を得ることが可能である.両生 類や哺乳類水晶体の誘電挙動と白内障化に伴う変化 や³⁾⁻⁵⁾,両生類水晶体の誘電理論解析⁶⁾に関しては,既に 我々のグループにより報告されているが,哺乳類水晶体 に対する誘電理論解析は今回が初めてである.

Ⅱ 実験方法

1. 材料と方法

7週齢 Wistar 系雄ラットの摘出水晶体を用いた.麻酔 薬過剰投与による安楽死のあと,眼球摘出し,破囊を避け ながら注意深く水晶体を取り出した.誘電測定は水晶体 摘出後ただちに室温(25±1℃,平均値±標準偏差)で行っ た.測定は、自作の水晶体用測定セルを使用し3,視軸が 電極面と垂直(電場と平行)となるよう水晶体を2枚の可 動式の白金黒をコートした白金電極板で挟んで固定し, その両端のアドミッタンスを測定した.アドミッタンス とはインピーダンスの逆数である.測定はコンピュータ (Hewlett-Packard, Model 216) 制御下で, インピーダン ス・アナライザ(同 Model 4191 A & 4192 A)を用いて, 100 Hz~500 MHz にわたる広い周波数域で行った.水晶 体を電極で挟む際,水晶体嚢や線維細胞を破壊せず,か つ,電極面が広く水晶体と接することに留意した.白金黒 つきの電極の使用と併せ、これらの方法により低周波で の電極分極による悪影響は著明に減少した.135 周波数 点をカバーする1回の測定に要する時間は約3分であっ た.測定により得られる実測データをセル定数3)を用い て誘電率(ε)と導電率(κ)に変換した.

2. 回転楕円体理論

水晶体の非常に細長い線維細胞一つ一つを殻付き回転

楕円体と考え,水晶体をその内部に線維細胞がぎっしり つまった細胞懸濁系とみなし,誘電モデル解析を行った. 水晶体線維細胞は,基本的に一層の殻をかぶった誘電体 とみなされ,3相系モデルで表現できる.3相とは,細胞間 隙に相当する外相(ϵ_a *),細胞膜に相当する膜相(ϵ_m *)およ び細胞質に相当する内相(ϵ_i *)である.殻付き回転楕円体 の実効複素誘電率(ϵ_k *)に関しては,すでに Asami ら⁷に より(式1)が導き出されている(内殻と外殻の脱分極要 素,A_kが等しい場合).

さらに、Asamiら⁷¹はランダム配列モデルの楕円体懸濁 系の式として

$$\frac{\varepsilon^* - \varepsilon_{a^*}}{\varepsilon^* + 2\varepsilon_{a^*}} = \frac{1}{9}\phi \sum_{\mathbf{k}=\mathbf{x},\mathbf{y},\mathbf{z}} \frac{\varepsilon_{\mathbf{k}^*} - \varepsilon_{a^*}}{\varepsilon_{\mathbf{k}^*} + (\varepsilon_{\mathbf{k}^*} - \varepsilon_{a^*})\mathbf{A}_{\mathbf{k}}} \qquad (\vec{\mathbf{x}}^* \mathbf{3})$$

を導きだした.我々は,電場に対して楕円体が平行に配列 する一定配列モデルを想定し,次式を得た.

$$\frac{\varepsilon^* - \varepsilon_{a^*}}{\varepsilon^* + 2\varepsilon_{a^*}} = \frac{1}{3}\phi \frac{\varepsilon_{k^*} - \varepsilon_{a^*}}{\varepsilon_{a^*} + (\varepsilon_{k^*} - \varepsilon_{a^*})A_k}$$
(7)

また,(式5)のごとく,Hanai⁸⁾の理論に従って(式3),(式 4)を濃厚系に拡張すると,

$$\varepsilon_{a}^{*} \to \varepsilon^{*}, \varepsilon^{*} \to \varepsilon^{*} + \varDelta \varepsilon^{*}, \text{ and } \phi \to \frac{\varDelta \phi^{'}}{1 - \phi^{'}}$$
 ($\vec{\mathbf{x}}, 5$)

ランダム配列モデルでは次式(式6)が

$$\Delta \varepsilon^* = \frac{\varepsilon^*}{3} \frac{\Delta \phi'}{1 - \phi'} \sum_{\mathbf{k} = \mathbf{x}, \mathbf{y}, \mathbf{z}} \frac{\varepsilon_{\mathbf{k}^*} - \varepsilon^*}{\varepsilon^* + (\varepsilon_{\mathbf{k}^*} - \varepsilon^*) \mathbf{A}_{\mathbf{k}}} \tag{\mathbf{T}} \mathbf{6}$$

一定配列モデルでは次式(式7)が導かれ,

$$\Delta \varepsilon^* = \varepsilon^* \frac{\varDelta \phi'}{1 - \phi'} \frac{\varepsilon_k^* - \varepsilon^*}{\varepsilon^* + (\varepsilon_k^* - \varepsilon^*)} \mathbf{A}_k \qquad (\vec{\mathbf{x}}, 7)$$

これらの式の両辺を数値積分することにより,それぞれ の懸濁系の複素誘電率を得た.今回の解析では,200回の 数値積分を繰り返したデータを用いた.

記号のリスト ε*:細胞懸濁系の複素誘電率

ε_a*:外相の複素誘電率
ε_n*: 膜相の複素誘電率
ε_i*:内相の複素誘電率
ε_k*: k(=x,y,z)軸沿い設付き回転楕円体の実効複素
誘電率
ε_p*:細胞(粒子)の複素誘電率
Φ:細胞懸濁系の体積分率
Φ':微小領域の体積分率
Φ':微小領域の体積分率
V:内相球の部分容量
A_k: k(=x,y,z)軸沿い脱分極要素
abc:回転楕円体の3軸
d: 膜(殻)厚

Ⅲ実験結果

1. 水晶体の誘電挙動

ラット摘出水晶体の典型的な測定例を図1に示す.100 Hz~500 MHzの周波数範囲内で,εは測定周波数ととも に減少し,κは逆に増加するという現象が認められた.こ のような周波数依存性のεとκの変化は,誘電分散ある いは誘電緩和と呼ばれており,ラット正常水晶体には,少

図1 典型的な水晶体の誘電挙動(A), Loss tangent 表示(B).

正常水晶体では 100 Hz~500 MHz の測定周波数域内 に 2 つの誘電分散現象を認める. Loss tangent 上の 2 つのピークのうち, 低周波側を P_1 , 高周波側を P_2 と呼 ぶ.

図2 ランダム配列回転楕円体モデルによるカーブ フィッティング.

ランダム配列モデルのみでは正常水晶体の誘電挙動を 再現できない.曲線1~3の理論計算に用いた電気的パ ラメータを表1に列挙する.

表1 ランダム配列理論計算に用いた各種電気的パラ メータ

曲線	細胞径 (µm)	\mathcal{E}_{\pm}	$\frac{K_{\pm}}{(\mathrm{mS/cm})}$	体積分率 (Φ)	
1	200/2/2	40	2.5	0.85	
2	400/2/2	40	2.5	0.85	
3	200/2/2	40	1.0	0.85	

 $\varepsilon_{s} = 78, \kappa_{s} = 12$ mS/cm, $\varepsilon_{m} = 5.0, \kappa_{m} = 0.1$ nS/cm, d = 8 nm として計算

なくとも2つの誘電分散が存在する(図1A).1つは kHz領域,もう1つはMHz領域にみられ,それぞれを分 散1,分散2と名付けた.Loss tangent は交流電場中での 誘電物質のエネルギー損失の目安となるものであり,生 体誘電研究において分散現象を示す有用な関数となるこ とが知られている⁹¹.図1Aと同一のデータを loss tangentで表示すると,図1Bのように,分散1と2が2つ の明確なスペクトルとなって分離された.この2つの ピーク値をそれぞれ P₁, P₂と名付けた.正常水晶体では, これらの比(P₁/P₂比)の多くは1.0以上であった.我々は 実験的白内障水晶体,特に皮質白内障において,この P₁/ P₂比が低下し,白内障の定量化あるいは予後判定に役立 つ可能性のあることを既に報告^{3)~5)}している.

2. ランダム配列回転楕円体モデル

まず, ランダム配列モデルによるカーブ・フィッティ ングを試みた.各種パラメータは,線維細胞の3軸長比が 200/2/2~400/2/2 μ m,体積分率 0.85,細胞外液はリンゲ ル液の誘電率 (ϵ_a =78)・導電率 (κ_a =15 mS/cm)とし,細胞 膜は通常の脂質二重層を想定し,厚さ8 nm,膜の誘電率 は5,導電率は 0.1 nS/cm とした.細胞内部のパラメー タは, 内相の誘電率 ϵ_a =40,導電率 κ_a =0.8~2.0 mS/cm と して, (式 6)に基づいてコンピュータで理論計算を行っ

図3 水晶体の等価回路.

ε*は各部位のインピーダンス, V は体積比率.水晶体を皮 質赤道部(E),皮質両極部(P),核部(N)に分け,図のよう な等価回路と比率で電気的につながっていると考える.

図4 一定配列回転楕円体モデルによるカーブフィッ ティング(1).

E, P, N, P+N はそれぞれ皮質赤道部,皮質両極部,核 部,皮質両極部+核部の理論曲線.実線は合成後の理論 曲線,プロットは実測データ. た結果を図2に示す.表1のごとく,いろいろとパラメー タを変化させても,いずれの場合も実測データに比べ理 論曲線の分散1の割合が分散2に比べて小さく,十分な フィッティングは不可能であった.使用した内相のパラ メータはカエル水晶体⁶⁰を参考とし,カーブ・フィッ ティングの結果,最終的に得られたものである.

3. 等価回路の設定と一定配列回転楕円体モデル

水晶体の皮質線維細胞は水晶体の前面を覆う上皮細胞 から分化し,六角形の断面を持ち,前極から外周に沿って 後極に向かい走行している.線維細胞は生長とともに内 部の核に近付き,皮質部では規則正しく配列し,核部では 細胞配列の規則性が失われ、複雑な形態を示すことが知 られている".そのため、水晶体を大きく3つの部分に分 け、インピーダンス測定時の交流電場中での線維細胞の 配列を考慮した等価回路を設定した(図3).ここでは,電 場に対して線維細胞が平行に配列する皮質赤道部(E)と 水晶体中央部が電気的に並列に接続しており,水晶体中 央部においては、電場に対して線維細胞が垂直に配列す る皮質両極部(P)と核部(N)が直列につながっていると した.水晶体嚢および上皮細胞層は,その占める体積が極 めて少なく電気的に果たす割合が小さいため,ここでは 無視して考える. EとPについては, (式7)に基づいて一 定配列モデルの理論計算を行い、また、Nについては内部 の複雑な構造からランダム配列モデルで理論計算を行っ た.これら各部の理論計算を行い,それを等価回路に従っ て合成し、全体のインピーダンスを得た(図4).合成に用 いた電気的パラメータを表2に示す.EとPは線維細胞 の配列方向は異なるが、その他パラメータは共通とした.

合成に際しては,導電率の低周波の収斂値(κ,)と導電 率増分(Δκ)を合成の目安とし,表2に示すパラメータで

図5 一定配列回転楕円体モデルによるカーブフィッ ティング(2).

破線は皮質細胞長の分布(-),一は分布(+),プロット は実測データ.皮質水晶体線維の細胞長に分布をつけ ることにより,水晶体の誘電挙動が非常に良く再現さ れる.1 kHz~100 MHzのフィッティングの平均残差 はわずか 1.7%.

表2 等価回路に基づく理論計算に用いた各種電気的パラメータ

部位	細胞配列	細胞径 (µm)	体積比率 (V)	ε ;	$\frac{\kappa}{(mS/cm)}$	体積分率 (Φ)
Е	平行	200/2/2	0.147	40	2.5	0.85
Р	垂直	2/2/200	0.569	40	2.5	0.85
Ν	ランダム	10/.6/.6	0.284	35	0.5	0.85

ε_a=78, κ_a=12 mS/cm, ε_m=5, κ_m=0.1 nS/cm, d=8 nm として計算 E:皮質赤道部, P:皮質両極部, N:核部

理論計算させた場合,図4の実線で示すごとく実測値に 比較的良くフィットしたが,低周波側では両者の違いが 目立つ.これは皮質の線維細胞長が200 µm と一定とみ なされているためと思われた.このため,皮質線維細胞長 に100~1,000 µm の分布があると考えて理論計算を行 い,同様の手順で等価回路に従い合成したものを図5に 示す.破線は図4で得られた最終曲線で,実線はさらに細 胞長に分布をつけたものである.細胞長に分布を付ける ことにより理論値と実測値は非常によく一致し,1 kHz ~100 MHz の周波数範囲でのフィッティングの平均残 差⁶は1.7% であった.また,最終的な各部の合成比率は, 皮質赤道部(E)15%,皮質両極部(P)57%,核部(N)28% で あった.

Ⅳ 考 按

従来から水晶体の誘電挙動については,いくつかの報 告例1011があるが,多くは比較的高周波側を測定したも のであった.カエル水晶体には 100 Hz~500 MHz の周 波数域内に少なくとも2つの誘電分散が存在することは 既に我々が報告。しているが、このうち分散2はいわゆ る β 分散領域に位置し, Maxwell-Wagner 効果, すなわ ち細胞膜表面での界面分極によるものと考えられる。). 同様のβ分散が、Paulyら¹⁰によりウシ水晶体の主分散 として報告されている.一方,分散1はその位置する周波 数域から,横紋筋などで報告されている,いわゆるα分 散⁸⁾との異同が問題となる.筋組織のα分散は,細胞膜表 面の界面分極に加えて筋細胞中の小管状の膜構造が関与 している可能性が報告⁸⁾されているが,水晶体細胞中に はそのような膜構造はない.また,図2に示したように水 晶体線維細胞をランダム配列回転楕円体の細胞懸濁系に 見立てて理論計算を行ったところ,フィッティングは十 分とはいえないものの,少なくとも 100 Hz~500 MHz の周波数域内に2つの分散が存在することは確かであ る.また,図3のように実際の水晶体の構造を考慮した現 実に即した等価回路に基づき理論計算を行った結果,図 4, さらには図5に示したように, 良いフィッティングが 得られた.このように,現実に即した殻付きモデルにより 良好なフィッティングが可能であることは,分散1も生 体膜に由来し, Maxwell-Wagner 効果のため生じる β分 散であることの根拠となる.実際,皮質水晶体線維細胞は

非常に細長く,規則正しく配列している.その短軸はせい ぜい数μmであるのに対し,長軸はmmのオーダーに達 する.このように,細長い細胞形態のために2kHz程度 のf.をもつ低周波の分散が生じたと考えても不思議で はない.モデル上は,細胞長が100~1,000μmの分布を 持つとした場合に良好なフィッティングを得たが,数 mmに達すると予想される線維細胞は湾曲しており,交 流電場中で電気力線が隣接する細胞への"乗り換え"を 起こすために最長で1mm程度の見かけの細胞長を示し たと理解できる.

2つの分散の起源については,両者ともB分散である と考えられ,図4に各部の分散現象を示したように、Eは 低周波の分散1に相当する分散しか示さず、PとNは反 対に主として分散2に相当する周波数域でしか分散現象 を示さなかった. E, P, Nの各部を直列あるいは並列にい かなる比率で合成しても、分散の生じる周波数域は変化 しないことから,分散1は皮質赤道部付近で線維細胞が 電場に対して平行に配列する部位から生じ,また,分散2 は皮質前極および後極付近で主に電場に垂直に配列する 部位と核部の分散が合成された結果となった.前述のご とく,最終的な各部の合成比率はE:15%, P:57%, N: 28%となったが、これらの値は成熟ラット水晶体の各部 位の比率として、無理のない結果と考えられる、図5にお いて,高周波側と低周波側の両端での理論曲線と実測値 のずれが目立つ.前述のごとく,低周波側は白金黒で白金 電極をコートしたとはいえ,実測値に電極分極のアー ティファクトが残存しているためと考えられ,100 MHz 以上の高周波側については蛋白結合水・自由水など, 殻 付きモデルのみでは説明の付かない水成分の分散の影響 が考えられる.

皮質水晶体線維の内相のパラメータは,表2のごとく, ϵ =40, κ =2.5 mS/cm と外相(ϵ =78, κ =15 mS/cm)と比 較し著明な低値を示し,細胞質中の高蛋白の状態を示す と考えられる.さらに内部の核部では, ϵ =35, κ =0.5 mS/ cm と水晶体線維が一層パックされた状態を反映してい る.また,膜の誘電率(ϵ)は5であり,膜容量(Cm)を計算 すると0.55 μ F/cm²となった(Cm= ϵ m· ϵ v/d, ϵ v;真空中 の誘電率, d;膜の厚さ).一般に生体膜の膜容量は1 μ F/ cm²程度¹²といわれているが, ラット水晶体線維の膜容 量は人工黒膜で報告されている膜容量に近い結果であっ た¹².水晶体線維は上皮から分化した後,ほとんどの細胞 でオルガネラが消失し脱核する.このため,細胞自体の生 理活性が低いと考えられ,細胞膜中のイオンチャンネル, ポンプなどの膜機能に関わる蛋白質が少ないことが,膜 容量が低値である原因かも知れない.

いずれにしても,本質的に水晶体の構造自体は,両生類 ・哺乳類を問わず同じであり,両生類水晶体の誘電理論 解析において構築した手法で哺乳類水晶体の解析が可能 であった.今後は理論解析から得られた正常水晶体の電 気的パラメータが,実験的白内障化に伴い,どのような変 化を来すかについて検討する予定である.

文 献

- Paterson CA : Extracellular space of the crystalline lens. Am J Physiol 218:797-802, 1970.
- 3) 渡辺牧夫, 洲崎敏伸, 玉井嗣彦: 水晶体の誘電挙動と 実験的白内障に伴う変化. あたらしい眼科 6:283 --289, 1989.
- 4) 小島善治,渡辺牧夫,上野脩幸,玉井嗣彦:ガラクトース白内障に伴うラット水晶体の誘電挙動の変化.あたらしい眼科 8:85-91,1991.

- 5)清家恭三,渡辺牧夫,上野脩幸: 寒冷白内障に伴う ラット水晶体の誘電挙動の変化.日限会誌 100: 262-269,1996.
- 6) Watanabe M, Suzaki T, Irimajiri A : Dielectric behavior of the frog lens in the 100 Hz to 500 MHz range. Simulation with an allocated ellipsoidalshells model. Biophys J 59:139–149, 1991.
- 7) Asami K, Hanai T, Koizumi N: Dielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological cells. Jpn J Appl Phys 19:359—365, 1980.
- Hanai T : Theory of dielectric dispersion due to the interfacial polarization and its application to emulsions. Kolloid Z 171:23-31, 1960.
- Surowiec A, Stuchly SS: Use of the loss-tangent function in dielectric spectroscopy. Bioelectromagnetics 7:259-269, 1986.
- Pauly H, Schwan HP: The dielectric properties of the bovine eye lens. IEEE Trans Biomed Eng 11: 103—109, 1964.
- 11) Dawkins AWJ, Gabriel C, Sheppard RJ, Grant EH: Electrical properties of lens material at microwave frequencies. Phys Med Biol 26: 1—9, 1981.
- Asami K, Irimajiri A : Dielectric dispersion of a single spherical bilayer membrane in suspension. Biochim Biophys Acta 769: 370-376, 1984.