外側血液網膜関門障害の陰性荷電状態の検索

第3報 硝子体内気体注入による障害

岸本 伸子,大熊 紘,宇山 昌延

関西医科大学医学部眼科学教室

要 約

Sulfur hexafluoride (SF₆)の硝子体内注入による脈絡膜網膜間の電気的関門の障害を陽イオン剤を用いて 電顕的に観察した.有色家兎硝子体内に100%SF₆0.5ml または空気0.5ml を注入した.陰性荷電部位検索法と しては、2、4、7、14日後に陽イオン剤 polyethyleneimine (PEI)生食水溶解液を頸動脈より投与し、続 いて灌流固定を行った後,眼球摘出し,試料を作成した.対照では PEI 粒子が網膜色素上皮細胞基底膜,Bruch 膜の内、外膠原線維,脈絡膜毛細血管基底膜に豊富に付着し、陰性荷電による電気的関門を示した.SF₆注入 7日まで上記の部位への PEI 粒子の付着は減少したが、14日に対照と同程度まで回復し、空気注入眼では7日 で回復した.注入した SF₆は7日で、空気は3日で検眼鏡的に吸収されたが、硝子体内に気体が滞留した期間 中は電気的関門機能は低下しており、気体が吸収されると回復し、可逆性の変化であることが示された.(日眼 会誌 94:654-662, 1990)

キーワード:外側血液網膜関門、SF。(Sulfur hexafluoride),硝子体内気体注入,電気的関門,網膜色素上皮

Effect of Intravitreal Gas on the Destruction of Anionic Sites in the Outer Blood-Retinal Barrier

Nobuko Kishimoto, Hiroshi Ohkuma and Masanobu Uyama

Department of Ophthalmology, Kansai Medical University

Abstract

The present work was undertaken to evaluate the effect of sulfur hexafluoride (SF₆) injected intravitreously in rabbit eyes. The alterations of the outer blood retinal barrier that was composed of anionic sites, using a cationic probe, polyethy leneimine (PEI). We injected 0.5ml of 100% SF₆ or 0.5ml of air into the vitreous cavity of rabbit eyes, and the 0.5% PEI-saline solution was given intravenously at 2, 4, 7, or 14 days after the injection. Control eyes demonstrated nunerous PEI-positive sites at the basement membrane of the RPE, collagen fiber of Bruch's membrane, and basement membrane of choriocapillaries. Until seven days after SF₆ injection, PEI-positive sites decreased, but had increased at 14 days to control levels, while in air-injected eyes, they had recovered at seven days. SF₆ in the vitreous was absorbed in seven days and air in three days. While gas was present in the vitreous, the charge barrier of the outer retina and choroid decreased, but when the gas was absorbed, the charge barrier recovered. The result showed that the decrease of charge barrier was a reversible change. (Acta Soc Ophthalmol Jpn 94 : 654-662, 1990)

別刷請求先:570 大阪府守口市文園町1 関西医科大学眼科学教室 岸本 伸子

(平成元年11月11日受付,平成元年12月14日改訂受理)

Reprint requests to: Nobuko Kishimoto, M.D. Dept. of Ophthalmol., Kansai Medical Univ.

¹ Fumizono-cho, Moriguchi 570, Japan

⁽Received November 11, 1989 and accepted in revised form December 14, 1989)

Key words: Outer blood-retinal barrier, SF₆ (Sulfur hexafluoride), Intravitreal gas injection, Charged barrier, Retinal pigment epithelium

I 緒 言

Sulfur hexafluoride (SF₆)は網膜剝離手術のガスタ ンポナーデ法や硝子体手術後の置換気体として用いら れているが、近年、硝子体手術の普及、そしてガスタ ンポナーデ法の有効性の確立に伴って、広く用いられ るようになった.SF₆の組織毒性については角膜¹⁾,水 晶体²⁾、網膜³⁾⁽⁴⁾及び血液網膜関門⁵⁾⁶⁾に対する影響が報 告されている。陰性荷電による外側血液網膜関門は既 報⁷⁾⁸⁾で述べた如く、ヨウ素酸ナトリウムによる網膜色 素上皮障害⁷⁾や光凝固⁸⁾など様々な病態により変化す るが、本実験では硝子体内にSF₆を注入した際の陰性 荷電による外側血液網膜関門の障害を、陽イオン剤を 用いて電顕的に観察した。

II 実験方法

1. 実験動物

体重1.2~1.5kgの白色家兎10羽20眼を用いた.家兎 は通常の固形試料で飼育し,光照射は昼夜12時間ずつ とした.

2. 硝子体内気体注入法

10眼には100%SF₆0.5ml, 7 眼には空気0.5ml を26 1/2G 針を用いて,角膜輪部の約1mm 後方から硝子体 中央へ注入した.3 眼は無処置で対照とした.

3. 眼圧測定法

眼圧測定は SF₆注入眼で 3 眼, 空気注入眼で 3 眼で 行った. Alcon Applanation Pneumotonograph を用 いて, 気体注入後, 5 分, 30分, 1 時, 6 時, 24時に 測定した.

4. 陰性荷電部位検索方法

家兎眼硝子体内に気体注入後,2日,4日,7日, 14日に眼球を摘出した。即ち両側の頸動脈にそれぞれ カテーテルを留置して,0.5%polyethyleneimine (PEI,分子量50,000~60,000,SIGMA Chem. Comp) 生食水溶解液3mlを左右のカテーテルより1.5mlずつ 注入して約10分間灌流した後,2%グルタールアルデヒ ド・2%パラフォルムアルデヒド・0.1M カコジル酸緩 衝液 (pH7.3)で灌流固定し,15分後眼球摘出した。 更に同固定液で浸漬固定を追加し,有髄部を除く眼球 後極部の組織片を作成し,エタノール系列で脱水,エ ポキシ樹脂包埋を行った. なお, 網膜の慨日性リズム を考慮して, 眼球摘出はすべて午前9時に行った. 1 μmの切片はトルイジンブルーで染色して光顕的に, 超薄切片は酢酸ウラニール, クエン酸鉛にて2重染色 を行い, 日立 HU-12型透過電子顕微鏡で観察した.

III 結 果

1. 臨床所見

硝子体内に注入された SF₆は7日で,空気は3日で 完全に吸収された.気体注入後の眼圧(図1,2)は SF₆,空気共,注入直後には40~64mmHgと上昇した が,5分間で急速に低下し,1時間後には7~35 mmHg,6時間後には9~16mmHgと正常範囲内に 回復した.

2. 病理組織学的所見

網膜はすべて有髄部を除く後極部の網膜を観察した.

1) 光学顕微鏡所見

無処置の対照(図 3A)では、灌流固定による脈絡膜 毛細血管の拡大を認めた他は感覚網膜には異常をみな かった.SF₆注入2日(図 3B)には外網状層に空胞形 成がみられ、視細胞外節の配列は乱れ、網膜色素上皮 の胞体に小空胞が多数みられた.SF₆注入4日(図 3C) になると内境界膜下の神経節細胞層に空胞が出現し た.外網状層における空胞は2日と同程度であったが、 網膜色素上皮においては著明に増加していた.SF₆注 入7日(図 3D)には神経節細胞層と外網状層の空胞は 消失した.視細胞外節の配列は正常になり、網膜色素 上皮細胞の空胞も減少した.SF₆注入14日(図 3E)に は網膜色素上皮に小空胞を僅かに残すのみで、対照と ほぼ同じ所見となった.

空気注入2日(図4A)ではSF₆と同様に外網状層の 空胞形成,網膜色素上皮胞体内の小空胞がみられたが SF₆に較べてその程度は軽度で,視細胞外節も正常に 配列していた.空気注入4日(図4B)で外網状層の空 胞が消失,空気注入7日(図4C)には網膜色素上皮に わずかの小空胞が残存するのみで,対照と同様の所見 を示した.

2) 電子顕微鏡的所見

陽イオン剤 PEI 粒子の付着による陰性荷電部位を

日眼会誌 94巻 7号

図3 SF₆注入眼の光顕所見.A:無注入の対照(トルイジンブルー染色,×600).灌流固定による脈絡膜毛細血管の拡大がみられた.B:SF₆注入2日(トルイジンブルー染色,×600).外網状層に空胞形成がみられ,視細胞外節の配列は乱れた.網膜色素上皮細胞胞体内には小空胞が散在した.C:SF₆注入4日(トルイジンブルー染色,×600)神経節細胞層に空胞がみられ,網膜色素上皮細胞胞体内の小空胞は増加した.D:SF₆注入7日(トルイジンブルー染色,×600).神経節細胞層および外網状層の空胞は消失したが,網膜色素上皮細胞胞体内の小空胞は残存した.E:SF₆注入14日(トルイジンブルー染色×600).対照と同様の所見を示す.

図4 空気注入眼の光顕所見.A:空気注入2日(トルイジンブルー染色,×600).外 網状層の空胞形成,網膜色素上皮細胞胞体内の小空胞がみられたが,SF₆注入眼に較 べると軽度であった.B:空気注入4日(トルイジンブルー染色,×600).外網状層 の空胞は消失したが,網膜色素上皮細胞胞体内の小空胞は残存した.C:空気注入7 日(トルイジンブルー染色,×600).対照と同様の所見を示す.

図5 無注入の対照の電顕所見. PEI 粒子(15~20nm) の豊富な付着が網膜色素上皮細胞の基底膜, Bruch 膜の内膠原線維層および外膠原線維層の膠原線維, 脈絡膜毛細血管内皮細胞の基底膜にみられた.(× 40,000)

観察すると,対照(図5)では電子密度の高いPEI粒子(15~20nm)が網膜色素上皮基底膜と脈絡膜毛細血 管基底膜の内側並びに外側に列を作って付着してお り,Bruch膜の内膠原線維層,外膠原線維層,にも周 期的な付着がみられた.脈絡膜毛細血管の内皮細胞の

図6 SF₆注入2日の電顕像. PEI 粒子の付着は網膜 色素上皮細胞の基底膜および脈絡膜毛細血管内皮細 胞の基底膜にわずかにみられた.(×40,000)

細胞膜には豊富に付着していたが,網膜色素上皮の basal infoldingの細胞膜への付着はほとんどみられ なかった.

 SF_6 注入2日(図6)には網膜色素上皮細胞は胞体内 に多くの小空胞がみられ, basal infolding は狭細して

図7 SF₆注入4日の電顕像. PEI 粒子は網膜色素上 皮細胞の基底膜と脈絡膜毛細血管内皮細胞の基底膜 に小数付着した.(×40,000)

図8 SF₆注入7日の電顕像(強拡). PEI 粒子の付着 は4日の所見と変化ない.(×40,000)

いた. PEI 粒子付着は網膜色素上皮細胞の基底膜及び 脈絡膜毛細血管基底膜にわずかみられるのみであっ た. SF₆注入4日(図7)には網膜色素上皮胞体内に lamellar inclusion body が対照よりも多くみられ, PEI 粒子は網膜色素上皮基底膜と脈絡膜毛細血管基底 膜に小数付着するようになった. SF₆注入7日(図8) では網膜色素上皮の lamellar inclusion body が更に 増加した(図9)以外4日の所見に比べて大きな変化 はなく, PEI 付着も4日と同程度であった. SF₆注入14 日(図10)になると網膜色素上皮胞体内の小空胞は残 存したが、PEI 付着が豊富にみられるようになった.

空気注入2日(図11)では網膜色素上皮胞体内の小空胞, basal infoldingの狭細など,SF6注入2日と同様の所見を示したが,SF6に比べて軽度であった.PEI 付着は網膜色素上皮基底膜,脈絡膜毛細血管基底膜に 小数みられ,やはりSF6に比べると減少は軽度であっ

図 9 SF₆注入7日の電顕像(弱拡). 網膜色素上皮細 胞胞体内に lamellar inclusion body が増加した. (×10,000)

図10 SF₆注入14日の電顕像. PEI 粒子は網膜色素上 皮細胞の基底膜および脈絡膜毛細血管皮細胞の基底 膜に豊富に付着するようになった(×40,000)

た. 空気注入4日(図12)では網膜色素上皮胞体内の 小空胞は2日と変化なく、PEI粒子の付着も同程度で あった. 空気注入7日(図13)は網膜色素上皮胞体内 の小空胞は残存したが、PEI粒子は豊富に付着するよ うになり、その付着はSF₆注入14日の所見と同程度で あった. また空気注入では網膜色素上皮胞体内に lamellar inclusion bodyの著明な増加はみられなかっ た(図14).

3) 上方網膜と下方網膜の組織像の比較

家兎は腹臥位で生活するため,硝子体注入した気泡 は眼球上半球に貯留する.従って上半球網膜は気泡の 振動,接触,圧迫による機械的刺激を直接受けやすい

図11 空気注入2日の電顕像. PEI 粒子の付着は網膜 色素上皮細胞の基底膜, 脈絡膜毛細血管内皮細胞の 基底膜に僅かにみられた. (×40,000)

図14 空気注入4日の電顕像(弱拡). 網膜色素上皮細 胞胞体内に lamellar inclusion body の増加をみな い.(×10,000)

図12 空気注入4日の電顕像. PEI 粒子の付着の状態 は2日の所見と変化ない.(×40,000)

図13 空気注入7日の電顕像、網膜色素上皮細胞の基 底膜,脈絡膜毛細血管内皮細胞の基底膜および Bruch 膜の膠原線維に PEI 粒子は豊富に付着した. (×40,000)

図15 無注入の対照の光顕像.(トルイジンブルー染 色,×600)A:上方網膜,B:下方網膜.網膜の組織 構造には異常をみない.

が、気泡に接することの少ない下半球網膜は影響は少 ないと考えられる.気泡の機械的刺激と網膜脈絡膜関 門の障害の関連性を調べるために、上半球網膜と下半 球網膜の組織像を比較した.

無注入の対照では光顕所見(図15)では上方網膜と 下方網膜はどちらも正常の組織構造を示し,電顕所見 (図16)でも豊富な PEI 粒子の付着が,網膜色素上皮細 胞基底膜,Bruch 膜の膠原線維及び脈絡膜毛細血管内 皮細胞基底膜にみられ,上方網膜と下方網膜で付着状 態に差はなかった.

図16 無注入の対照の電顕像、A:上方網膜,B:下方 網膜,共に豊富な PEI 粒子の付着が網膜色素上皮細 胞の基底膜,Bruch 膜膠原線維および脈絡膜毛細血 管内皮細胞の基底膜にみられ,付着状態に差は認め られない.(×40,000)

図17 SF₆注入4日の光顕像.(トルイジンブルー染 色,×600)A:上方網膜,B:下方網膜、ともに神経 節細胞層と外網状層に空胞形成がみられ,網膜色素 上皮細胞胞体内の空胞も同程度である.

SF₆注入7日の光顕像(図17)では、上半球網膜にも 下半球網膜と同様に網膜色素上皮細胞の胞体内に空胞 がみられ、電顕像(図18)でもほぼ同程度のPEI粒子 の付着が網膜色素上皮細胞基底膜及び脈絡膜毛細血管 内皮細胞基底膜にみられた.

空気注入眼においても注入4日の光顕像(図19)で は上半球網膜と下半球網膜の網膜色素上皮細胞胞体内 の空胞の程度,電顕所見(図20)での PEI 粒子の付着

図18 SF₆注入4日の電顕像.A:上方網膜,B:下方 網膜.同程度の PEI 粒子の付着が網膜色素上皮細胞 の基底膜および脈絡膜毛細血管内皮細胞の基底膜に みられる.(×40,000)

図19 空気注入4日の光顕像.(トルイジンブルー染 色,×600)A:上方網膜,B:下方網膜,網膜色素上 皮細胞胞体内の空胞の程度に差を認めない.

状態に差を認めなかった.

IV 考 按

SF₆は1973年にNorton⁹⁾が網膜剝離手術に応用して 以来,注入量よりさらに膨張するという特性から網膜 に対する持続的なタンポナーデ効果を期待して,網膜 剝離手術や硝子体手術後の置換気体として頻用される ようになった.最近ではSF₆より更に眼内滞留期間の 長い octafluorocyclobutane (C₄F₈)⁵⁾¹⁰⁾, perfluoropropane (C₃F₈)²⁾¹⁰⁾¹¹⁾等も開発され,その臨

図20 空気注入4日の電顕像、A:上方網膜、B:下方 網膜、PEI粒子は網膜色素上皮細胞の基底膜および 脈絡膜毛細血管内皮細胞の基底膜に同程度に付着した.(×40,000)

床応用も試みられている. 眼内注入気体の眼内組織に 対する影響に関する報告は多く、Horn(1972)ら¹は家 兎前房内にSF。を注入し、刺激をうけた角膜内皮細胞 は増殖,重層化して新しい一層の内皮細胞を再生する. と述べている. Fineberg (1975)ら³⁾は猿硝子体内に SF₆とairの混合気体を注入し, ERGでは変化がな かったが, 組織学的に視細胞外節の肥厚がみられ、こ れは気体注入時の眼圧変動によるものではないかと推 察している. また Constable(1975)ら⁵⁾は SF₆, C₄F₈, 空気を猿眼硝子体に注入し,硝子体の電気泳動で血漿 タンパクが硝子体内に増加し,かつ I¹³¹でラベルした 血漿タンパクが硝子体内に増加することから, 眼血管 系の透過性亢進を示している. Lincoff (1980)ら¹⁰は 0.2ml, 0.4mlのCF₄, C₄F₄, C₃F₈, C₄F₈, SF₆, を硝 子体注入し、組織学的に変化はなかったと報告してい る. Killey (1980)ら⁶⁾は家兎眼に硝子体手術を行い, SF6で置換後の硝子体組成を測定し、血液眼関門、血液 房水関門の破綻を述べている. 島田(1984, 1985)ら4)12) は猿眼で硝子体手術を行い、30%SF。で置換した場合、 組織学的に可逆性の網膜色素上皮の障害を認めたと報 告している.

生理的条件下では一般に細胞の表面は複合糖質を含 むため陰性に荷電している.また上皮細胞,内皮細胞 の基底膜はグルコサミノグリカン(ムコ多糖)を含む プロテオグリカンで構成されるために陰性荷電をも ち,陰性荷電物質に対する電気的な通過バリアー機能 を持っている.また膠原線維はトロポコラーゲンの acid endogroup が陰性荷電を作るといわれている.陽 イオン剤 PEI は陰性荷電部位に付着して電気的関門 を示すが,網膜,脈絡膜毛細血管では網膜色素上皮基 底膜,脈絡膜毛細血管基底膜,Bruch 膜の膠原線維が 陰性荷電を示す^{11)~18}.

正常対照でみた PEI 粒子付着の結果を確認した上 で,硝子体内に気体を注入すると、PEI 粒子の付着は SF₆注入眼では2日後および4日後にはわずかにみら れる程度にまで減少したが、7日には増加傾向を示し、 14日には対照と同程度にまで回復した。空気注入眼で は2日後に PEI 粒子の付着はわずかであったが.4日 で増加しはじめ7日には対照と同程度となった。また PEI 粒子の付着の増減は組織障害の程度とほぼ一致し ており,神経節細胞層及び外網状層の空胞形成,視細 胞外節の乱れ、網膜色素上皮胞体の小空胞等の組織障 害がみられた期間, すなわち SF6注入眼では7日, 空気 注入眼では4日の間, PEI 粒子の付着も減少して電気 的関門機能も低下していた。 さらに電気的関門機能が 低下した期間は硝子体内に気体が存在した期間と関連 していた. 硝子体内の SF6は7日で, 空気は4日で吸収 されたが、これは減少した PEI 粒子の付着が増加しは じめた時期と一致した. すなわち硝子体内の気体が吸 収されると組織障害は修復され, 電気的関門機能も回 復すると考えられた.

SF₆と比較して空気による障害は軽度であったが, 外網状層の空胞, 視細胞外節の配列の乱れ, 網膜色素 上皮細胞胞体内の小空胞など同じ内容の組織障害を示 した. 従って本実験で示した電気的関門の障害は SF₆ に特異的とは考えにくい.

硝子体内注入した気泡の振動,接触,圧迫による網 膜,脈絡膜への機械的刺激の関与を調べるため,気体 が貯留する眼球上方の網膜と気体の接することの少な い下方網膜の組織所見を比較した.SF₆注入眼におい ても空気注入眼においても組織所見では上方網膜と下 方網膜で相違なく,PEI粒子の付着も同程度であった ことから気泡による機械的刺激による電気的関門の障 害は考えにくい.硝子体内の気体は一旦眼内の液性成 分に溶解されてSchlemm 管から,または直接眼内組 織に吸収されて眼外へ排出される.気体が吸収されて ゆく過程で何等かの機序により組織障害を起こした可 能性が考えられる.

また SF₆注入眼を電顕的に観察すると, 網膜色素上 皮胞体内に lamellar inclusion body が増加していた が, 空気注入眼では少数みられたのみであった. これ はSF₆が視細胞外節に対して何等かの変性作用があ り、視細胞外節が網膜色素上皮のライソゾーム酸素に より消化されにくくなったためか、あるいはSF₆が網 膜色素上皮に対して何等かの影響を及ぼし、貪食能が 低下したものと推測された.

眼圧の上昇はSF₆注入眼でも空気注入眼でも一過性 であり,注入直後の眼圧はSF₆,空気注入眼とも40~64 mmHgと高値であったが、5分間で急速に低下し、6 時間後には正常範囲内に低下した.眼圧の上昇に関し てはNorton(1973)⁷⁹⁹が100%SF₆2ml以内の注入量で あれば30mmHg以上に上昇することはないと述べて おり,池田(1988)ら¹⁹⁹は網膜剝離眼に100%SF₆0.5ml を注入して眼圧の経過を測定し、注入直後は51mmHg の高眼圧を示したが、15分以内に正常値まで低下した、 と報告している.我々の実験は100%SF₆を0.5ml 注入 したが、Norton や池田らの報告と同じく短時間で正 常範囲まで低下したため高眼圧による影響は少ないと 考えられる.

以上の網膜, 脈絡膜の電気的関門を陽イオン剤を用 いて検索することにより, 硝子体注入した SF₆及び空 気の電気的関門に対する影響を検索した. SF₆注入に よっても,空気注入によっても電気的関門機能は低下 したが, SF₆注入眼では14日,空気注入眼では7日で回 復し,可逆性の変化であることが示された.

本論文の要旨は第55回日本中部眼科学会及び第28回日本 網膜剝離学会において発表した。

文 献

- Horn DL, Edelhauser HF, Aaberg TM, et al: In vivo effects of air and sulfur hexafluoride gas on rabbit corneal endothelium. Invest Ophthalmol 11: 1028-1036, 1972.
- Fineberg E, Machemer R, Sulivan P, et al: Sulfur hexafluoride in owl monkey vitreus cavity. Am J Ophthalmol 79: 67-76, 1975.
- 4)島田宏之,佐藤 節,広川正泰,他:硝子体手術に 関する基礎的研究.その5.実験的硝子体出血猿眼 における黄斑部への影響.日眼会誌 88: 856 -872,1984.
- Constable IJ, Swann DA: Vitreous substitution with gases. Arch Ophthalmol 93: 416-419, 1975.

- Killey FP, Edelhauser HF, Aaberg TA: Intraocular fluid dynamics. Arch. Ophthalmol 98: 1448-1452, 1980.
- 7) 岸本伸子,大熊 紘、山岸和矢,他:外側血液網膜 関門障害の陰性荷電状態の検索.第1報.ヨウ素酸 ナトリウムによる早期障害.日眼会誌 94: 25 -32,1990.
- 28) 岸本伸子,大熊 紘,宇山昌延:外側血液網膜関門 障害の陰性荷電状態の検索,第2報.光凝固後の変 化.日眼会誌 94:645-653,1990.
- Norton EWD: Intraocular gas in the management of selected retinal detachments. Tr Am Acad Opthalmol Otolaryugul 788: 85-98, 1973.
- Lincoff H, Mardirossian J, Lincoff A, et al: Intravitreal longevity of three perfluorocarbon gases. Arch Ophthalmol 98: 1610-1611, 1980.
- Crittenden JJ, Juan E, Tiedeman J: Expansion of long-acting gas bubbles for intraocular use. Arch Ophthalmol 103: 831-834, 1985.
- 12)島田宏之,佐藤 節,前 保彦,他:硝子体手術に 関する基礎的研究.その6.実験的硝子体出血猿眼 における手様体,虹彩,隅角への影響.眼紀 36: 1576-1583,1985.
- 13) Schurer JW, Kalicharan D, Hoedemaeker J, et al: The use of polyethyleneimine for demonstration of anionic sites in basement membranes and collagen fibrils. J Histochem Cytochem 26: 688-689, 1978.
- 14) Ausprunk DH, Boudreau CL, Nelson DA: Proteoglycans in the microvasculature. 1. Histochemical localization in microvessels of rabbit eye. Am J Pathol 103: 353-366, 1981.
- Essner E, Pino RM: Distribution of anionic sites in Bruch's membrane of the rabbit eye. Eur J Cell Biol 27: 251-255, 1982.
- 16) Pino RM, Essner E, Pino LC: Location and chemical composition of anionic sites in Bruch's membrane of the rat. J Histochem Cytochem 30: 245-252, 1982.
- 17) Caldwell RB, Slapnik SM, McLaughlin BJ: Decreased anionic sites in Bruch's membrane of spontaneous and drug-induced diabetes. Invest Ophthalmol Vis Sci 24: 1691–1697, 1986.
- 18) 上野聡樹:血液眼関門についての研究一機能と形態の接点,その研究法の開発一.第1部.血液一網膜関門構成細胞における機能関連酵素の局在および細胞膜表面荷電のbarrier機能の関与について、日眼会誌 92:1913-1960,1988.
- 19) 池田恒彦,田野保彦:ガスタンポナーデ時の眼圧の推移について.眼紀 39:606-609,1988.