大脳視覚野における視覚刺激時の functional magnetic

resonance imaging の検討

三木 淳司¹⁾, 中島 孝²⁾, 藤田 基³⁾, 渡辺 浩之⁴⁾ 桑原 武夫⁴⁾, 成瀬 昭二⁵⁾, 高木 峰夫¹⁾, 阿部 春樹¹⁾ ¹⁾新潟大学医学部眼科学教室, ²⁾国立療養所犀潟病院神経内科 ³⁾国立療養所犀潟病院放射線科, ⁴⁾新潟大学脳研究所神経内科学教室 ⁵⁾京都府立医科大学脳神経外科学教室, 放射線医学教室

約

要

非侵襲的に脳の機能画像を得ることができる functional magnetic resonance imaging (fMRI)を用い て,視覚刺激時の脳の視覚野の信号強度変化を測定した. 対象は,正常人10人と同名半盲の患者2人(うち1人は 多発性硬化症の回復期)に対し行った.視覚刺激はパター ン視覚誘発脳波測定用のチェッカーボード画面を用い, 全視野・半視野刺激を与えた.正常人では,全視野刺激 では両側の後頭葉一次視覚野に,半視野刺激では反対側 の一次視覚野に信号強度増加を認めた.同名半盲の患者

ではそれぞれ視野検査結果に対応する結果が得られた. このように fMRI を用いて,視覚刺激時の一次視覚野の 活性化を画像化することが可能であり,他覚的視機能検 査にも応用できる可能性があると考えられた.(日眼会誌 99:612-617,1995)

キーワード:機能的磁気共鳴画像,脳の機能画像,視覚 刺激,一次視覚野,同名半盲

Functional Magnetic Resonance Imaging of the Human Primary Visual Cortex during Visual Stimulation

Atsushi Miki¹⁾, Takashi Nakajima²⁾, Motoi Fujita³⁾, Hiroyuki Watanabe⁴⁾, Takeo Kuwabara⁴⁾, Shoji Naruse⁵⁾, Mineo Takagi¹⁾ and Haruki Abe¹⁾

¹⁾Department of Ophthalmology, Niigata University School of Medicine ²⁾Department of Neurology, National Saigata Hospital ³⁾Department of Radiology, National Saigata Hospital ⁴⁾Department of Neurology, Niigata University Brain Research Institute ⁵⁾Department of Neurosurgery and Radiology, Kyoto Prefectural University of Medicine

Abstract

Signal changes in the human primary visual cortex during visual stimulation were evaluated using non-invasive functional magnetic resonance imaging (fMRI). The experiments were performed on 10 normal human volunteers and 2 patients with homonymous hemianopsia, including one who was recovering from the exacerbation of multiple sclerosis. The visual stimuli were provided by a pattern generator using the checkerboard pattern for determining the visual evoked potential of full-field and hemifield stimulation. In normal volunteers, a

signal increase was observed on the bilateral primary visual cortex during the full-field stimulation and on the contra-lateral cortex during hemifield stimulation. In the patient with homonymous hemianopsia after cerebral infarction, the signal change was clearly decreased on the affected side. In the other patient, the one recovering from multiple sclerosis with an almost normal visual field, the fMRI was within normal limits. These results suggest that it is possible to visualize the activation of the visual cortex during visual stimulation, and that

別刷請求先:951 新潟県新潟市旭町通1番町757 新潟大学医学部眼科学教室 三木 淳司 (平成6年10月24日受付,平成6年12月27日改訂受理)

Reprint requests to: Atsushi Miki, M.D. Department of Ophthalmology, Niigata University School of Medicine. 1-757 Asahimachidori, Niigata-shi, Niigata-ken 951, Japan

⁽Received October 24, 1994 and accepted in revised form December 27, 1994)

平成7年5月10日

there is a possibility of using this test as an objective method of visual field examination. (J Jpn Ophthalmol Soc 99:612-617, 1995)

I 緒 言

脳の神経活動を評価する試みは、以前からさまざまな 方法で行われてきた。例えば脳波もその1つであり、視 覚誘発脳波、聴性脳幹誘発脳波などの感覚系の誘発電位 はそれぞれの系の機能評価を可能とし、臨床的に繁用さ れている。しかし、脳波の空間的分解能には限界があり、 機能局在は脳波からは明らかでない。また、放射性同位 元素を用いる positron emission tomography (PET) は 脳の局所でのグルコース消費量、血流量、酸素消費量な どを測定し、脳の機能的画像を得る代表的な方法^{1)~7)}で ある。しかし、PET は時間・空間分解能がやや劣り、賦 活領域の解剖学的同定が困難なこと、放射線被曝を受け ることや同一被験者に繰り返し実験を行えないこと、ま た、実験の費用が高額なことからその応用は制限されて いる。

近年, magnetic resonance imaging (MRI)を用いて 非侵襲的に脳の機能画像を得る方法 (functional magnetic resonance imaging, fMRI) が開発された.fMRI により視覚,聴覚,痛覚,運動など,さまざまな刺激時 に脳の機能画像が得られることが報告されている が^{8)~22)},その中でも視覚刺激による脳の信号変化は取り 分け大きいとされている.そこで,今回我々は正常人と 視野検査で同名半盲を認めた患者に対して,視覚誘発脳 波測定用のチェッカーボード画面を用いて視覚刺激を行 い,fMRI による一次視覚野の画像化を行ったので,その 結果について検討し,考察を加えた.

II実験方法

Key words : Functional magnetic resonance imag-

ing, Functional imaging of the brain,

Visual stimulation, Primary visual cortex, Homonymous hemianopsia

1. 原 理

Fox ら²³⁾および Prichard ら²⁴⁾によると,安静時の脳に おける糖代謝は主として好気的であるが、神経活動時に は嫌気的解糖が主体になっているという.したがって. 脳の局所が活性化されると局所脳血流は増加するが,酸 素消費量はそれほど伸びない. このため、局所の血管内 において全ヘモグロビン(total-Hb)に対する酸素化ヘモ グロビン (oxy-Hb) の割合が相対的に増加し、脱酸素化 ヘモグロビン (deoxy-Hb) は減少する. この deoxy-Hb は内因性常磁性物質であり、T2*を短縮させる性質を 持っている. このため、deoxy-Hbが相対的に減少する と、T2*強調画像でのMR信号は結果的に増強する.この ようにして造影剤を用いずに、ヘモグロビンの酸素化レ ベルの変化により、局所の脳の活性化を MR 信号の増強 としてとらえる方法が blood oxygenation level dependent (BOLD) contrast 法²⁵⁾である。今回, この方法を用 いて実験を行った.

2. 対 象

正常人10名(男性7名,女性3名)と同名半盲の患者 2名(男性1名,女性1名)の計12人を対象とした。正 常被験者の検査時の年齢は20~33歳で平均25.9歳で あった。

症例1:58歳の同名半盲の男性.1994年3月に発症した左後大脳動脈領域の脳梗塞による視野異常の精査のため、新潟大学医学部附属病院眼科を受診した。視力は右眼0.4 ($1.2 \times +1.25 D \bigcirc cyl-1.0 DAx 180^{\circ}$),左眼0.8 ($1.2 \times +1.0 D \bigcirc cyl-0.5 DAx 20^{\circ}$)で、Goldmann

図1 症例1の Goldmann 視野.

図2 症例2の Goldmann 視野.

視野検査で黄斑分割を伴う右同名半盲を認めた(図1). 水晶体に軽度の初発白内障を認めたが,眼科的に他には 異常所見は認めなかった.

症例2:36歳の同名半盲の女性.1994年2月に近医眼 科でHumphrey視野検査を受け、左同名半盲を指摘さ れ、国立療養所犀潟病院を受診した。右視索、外側膝状 体に病巣を認め、多発性硬化症と診断された。治療後症 状は改善し、Goldmann視野検査でも左眼の左視野に軽 度の内部イソプターの沈下を認めるのみであった(図 2).眼科的に他には異常所見はなかった。視力は両眼と もに0.09(1.2)であった。パターン視覚誘発脳波では両 眼とも右半視野、左半視野刺激時に振幅は明らかな差を 認めなかったが、P₁₀₀は右半視野刺激時に右眼100、左眼 97(msec)、左半視野刺激時に右眼124、左眼125(msec) であり、左半視野刺激時に潜時の延長を認めた。

3. 方 法

MRI は国立療養所犀潟病院で臨床的に使用されてい る島津製作所製の MAGNEX 150(静磁場強度1.5 テス ラ)を用い, surface coil を後頭部に使用した。測定パル ス系列はフィールドエコー系の Small Tip Angle Gradient Echo (STAGE) C, field of view (FOV) = 230 mm, matrix = 256×256 , repetition time(TR) = 102 msec, echo time(TE)=60 msec (matrix=128×128の時は TR=90 msec, TE=60 msec), flip angle=40°, number of excitations(NEX) =1, スライス厚を6mmとし, T_2^* 強調画像を撮像した.パターン発生装置は Medelec 製 SAPPHIREを使用し、Sharp 製液晶プロジェクター XV-T2Zを通しスクリーンに投影し、被験者には MRI のガントリーの中からプリズム眼鏡を用いて足元の方向 にあるこのスクリーンを固視させた。チェッカーボード の条件は刺激頻度8Hz,コントラスト100%,刺激視野 13 度×20 度, 視角 2 度とした。刺激は全視野・半視野刺 激で行い,固視点をスクリーン上に設け,実験中は両眼 で固視点を固視させた.

測定は、まず位置決めのために T1強調画像を撮像し、 鳥距溝を含む冠状断像を得た.その後、T2*強調画像で刺 激 off で 3 scan (または 4 scan), 刺激 on で 3 scan (ま たは4 scan)を測定し、これを3回繰り返し、1回の測定 で連続18 scan(または24 scan)を測定した。この測定を 1回の実験において右半視野・左半視野・全視野刺激の 3回(あるいは全視野のみ1回)行った。画像処理には従 来から用いられているサブトラクション画像(視覚刺激 時から安静時の画像を差し引いた画像)よりも、よりアー チファクトの少ない T マップ画像を用いた. この方法は 視覚刺激時と安静時の画像の間で, pixel ごとにt 検定を 行い画像を得る方法である。この方法で得られた画像を T.強調画像に重ね合わせることにより、脳の活性化部位 が画像上明らかになるように表示した.また,後頭葉視 覚野の一部を関心領域(region of interest)として円で囲 み、内部の MR 信号の強度変化をグラフにして経時的変 化を調べた.

III 結 果

正常人のデータでは全例で、後頭葉一次視覚野である 鳥距溝皮質に有意な信号強度上昇を認め、全視野刺激で は両側の視覚野、半視野刺激では反対側の視覚野に信号 強度の増加を認めた(図3).症例1では半側視野刺激で は固視困難と考え、全視野刺激のみ行った。脳梗塞のあ る左後頭葉では明らかに信号変化に乏しく、視野検査結 果と一致する所見であった(図4).症例2では右・左半 視野、全視野の3種類の刺激を行ったが、左右差なくほ ぼ正常所見であった(図5).また、正常人のデータにお いて、時間一信号強度曲線のグラフからも視覚刺激時の 信号強度上昇が確認された(図6).

IV 考 按

MRI は元来高い空間分解能を持つ検査法であり, computed tomography と異なり,任意の断層像が得ら 平成7年5月10日

図3 正常被験者のデータ.

左上がT₁強調画像(T1WI),右上が右半視野刺激時のTマップをT₁強調画像に重ね合わせた画像(RIGHT HEMIFIELD),同様に左下が左半視野刺激時の画像(LEFT HEMIFIELD),右下が全視野刺激時の画像(FULL-FIELD)である(R=右,L=左).右半視野刺激時には左の,左半視野刺激時には右の,全視野刺激時には両側の一次視覚野に信号強度上昇を認める.

図4 症例1のデータ.

左上が矢状断の T₁強調画像,右上は冠状断面を設定している画像 (PLAN),左下が冠状断の T₁強調画像 (T1WI),右下が T₁強調画像に全視野刺激時の Tマップを重ね合わせた画像 (T1WI+T-MAP)である。右の一次視覚野には信号強度上昇を認めるのに対し,左の一次視覚野には変化がみられない。

れる.しかし,従来,形態学的所見のみしか得ることが できなかった.fMRI は形態学的所見のみならず,機能的 情報を得ることのできる検査法であり,通常の MRI 画 像に重ね合わせることにより,機能の局在を明らかにで きる.また,経時的変化をとらえることも可能で,繰り

図5 症例2のデータ.

左上が T₁強調画像,右上が右半視野刺激時の画像,左 下は左半視野刺激,右下が全視野刺激時の画像である. 右半視野刺激時には左の,左半視野刺激時には右の, 全視野刺激時には両側の一次視覚野に信号強度上昇を 認める.正常人のデータと同様である.

返し実験を行うことも容易である.

視覚刺激による fMRI には,眼前フラッシュ刺激や特殊な眼鏡による刺激を用いた報告⁸⁾¹⁰⁻¹²⁾¹⁵⁾¹⁹⁾が多い.しかし,我々が用いたスクリーン上の画面をプリズム眼鏡で固視させる方法²⁰⁾は将来的に他の視覚刺激に応用できる可能性があり,有用であると考えられる.PET の研究結果からも,視覚野のグルコース消費量が白色光刺激よりも市松模様による刺激で大きいという報告²⁾⁷⁾があり,より信号変化を大きくさせるためにチェッカーボードによる刺激を用いた.さらに,今回の実験では信号変化を 最大にするために刺激時はチェッカーボードを反転させた.刺激頻度は網膜神経節細胞の電気生理学的研究の結果や視覚誘発脳波,PET のデータで示されている通り,最大の反応が得られるとされる8Hzを用いた^{5)~7)}.また,チェックサイズは屈折矯正を行わずに実験を行ったので,比較的大きめのサイズを用いた.

今回の実験ではまず正常人を対象に,fMRIにより視 覚野に視覚刺激に一致して信号強度の増加がみられるか どうか検討した。その結果,一次視覚野である鳥距溝皮 質に全例に変化を認め,視覚野の活性化をとらえること が可能であると考えられた。

次に,この変化の局在性を確認するために,正常人を 対象にして半視野刺激を行った.右半視野刺激では左後 頭葉に,左半視野刺激では右後頭葉に信号変化を認めた. この場合,暗順応下で実験を行っているため,散乱光の 影響が対側に及ぶ可能性があるが,この実験結果からは 散乱光の影響は無視できる程度であったと考えられる.

さらに、視野異常のある患者に他覚的視機能検査として fMRI が応用できるかどうか検討した。症例1は脳梗

図6 正常被験者のデータ.

左は冠状断の T₁強調画像である.この画像中の2つの region of interest(1:右一次視覚野,2:左一次 視覚野)の T₂*強調画像における MR 信号の経時的変化を示したのが右のグラフである.視覚刺激時(下線 部)に両側の一次視覚野で信号強度が上昇している.

塞による同名半盲であり,症例2は多発性硬化症による 同名半盲の症例である.症例2では治療に反応し,ほぼ 正常視野に復していたが,パターン視覚誘発脳波では患 側の半視野刺激で潜時の遅延が残存しており,このよう な症例でもfMRIで異常が検出できるかどうか実験を 行ってみた.結果は,症例1では右の一次視覚野に信号 強度の増強がみられたが,半盲側の視覚中枢に相当する 左の一次視覚野では変化を認めず,視野検査所見を他覚 的に裏付ける結果と考えられた.症例2では一次視覚野 の信号変化に左右差が認められず,ほぼ正常の所見と考 えられた.これらの結果から,fMRIにより他覚的な視機 能評価が可能であり,視野検査のような自覚的所見に対 応する所見を得ることが可能であると考えられた.これ は我々の調べた限りでは,fMRIの眼科領域への応用の 初めての報告である.

fMRIの問題点としては,脳に解剖学的個人差がある こと,被験者の頭部のごくわずかな動きがアーチファク トの原因になること²⁶⁾などが挙げられる.また,メカニズ ムに関しても, in-flow 効果が関与するために細静脈が高 信号領域となっている可能性が指摘されており²¹⁾,検討 が必要と思われる.

fMRI は非侵襲的で,時間・空間分解能が優れていること,臨床用 MRI 装置で検査が可能であること,脳の機能 活性化部位を通常の MRI 画像に直接対応づけられるこ と,また,感度が良いため異なる被験者間でデータ処理 をする必要がなく,被験者個人のデータが得られること など,従来の検査法にない長所を持っている.このため, 視覚に関係した脳機能の研究に有用であると考えられ, また,疾患において視機能の他覚的検査に応用できる可 能性があると考えられる.

稿を終えるにあたり,技術的御協力を頂いた島津製作所の

清水公治氏,武尾和浩氏,河野和宏氏に感謝いたします. 本論文の要旨は第98回日本眼科学会総会(1994年4月)で 発表した.

文 献

- Phelps ME, Mazziotta JC, Kuhl DE, Nuwer M, Packwood J, Metter J, et al: Tomographic mapping of human cerebral metabolism: Visual stimulation and deprivation. Neurology 31:517-529, 1981.
- 清澤源弘,中川陽一:脳循環代謝と視覚.眼科 34: 559-566,1992.
- 3) Fox PT, Mintun MA, Raichle ME, Miezin FM, Allman JM, Essen DCV: Mapping human visual cortex with positron emission tomography. Nature 323: 806-809, 1986.
- 4) Fox PT, Miezin FM, Allman JM, Essen DCV, Raichle ME: Retinotopic organization of human visual cortex mapped with positronemission tomography. J Neurosci 7: 913-922, 1987.
- Fox PT, Raichle ME: Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. J Neurophysiol 51: 1109–1120, 1984.
- Fox PT, Raichle ME: Stimulus rate determines regional brain blood flow in striate cortex. Ann Neurol 17: 303-305, 1985.
- 7) **百瀬敏光, 佐々木康人**: ポジトロン CT の神経眼科 領域への応用. 神経眼科 9:164-169, 1992.
- 8) Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, et al : Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254 : 716 -719, 1991.
- 9) Frahm J, Bruhn H, Merboldt K-D, Hänicke W: Dynamic MR imaging of human brain oxygena-

tion during rest and photic stimulation. J Magn Reson Imag 2: 501-505, 1992.

- 10) Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89: 5675-5679, 1992.
- 11) Ogawa S, Tank DW, Menon R, Ellermann JM, Kim S-G, Merkle H, et al: Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951 -5955, 1992.
- 12) Menon RS, Ogawa S, Kim S-G, Ellermann JM, Merkle H, Tank DW, et al: Functional brain mapping using magnetic resonance imaging. Signal changes accompanying visual stimulation. Invest Radiol 27: S47—S53, 1992.
- 13) Belliveau JW, Kwong KK, Kennedy DN, Baker JR, Stern CE, Benson R, et al: Magnetic resonance imaging mapping of brain function. Human visual cortex. Invest Radiol 27: S59—S65, 1992.
- 14) Henriksen O, Larsson HBW, Ring P, Rostrup E, Stensgaard A, Stubgaard M, et al: Functional MR imaging at 1.5T. Initial results using photic and motoric stimulation. Acta Radiologica 34: 101-103, 1993.
- 15) Connelly A, Jackson GD, Frackowiak RSJ, Belliveau JW, Vargha-Khadem F, Gadian DG: Functional mapping of activated human primary cortex with a clinical MR imaging system. Radiology 188: 125–130, 1993.
- 16) Frahm J, Merboldt KD, Hänicke W: Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 29: 139-144, 1993.
- Menon RS, Ogawa S, Tank DW, Ugurbil K:
 4 Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the

human primary visual cortex. Magn Reson Med 30: 380-386, 1993.

- 18) Ogawa S, Menon RS, Tank DW, Kim S-G, Markle H, Ellermann JM, et al: Functional brain mapping by blood oxygenation leveldependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophysical J 64: 803-812, 1993.
- 19) Rosen BR, Aronen HJ, Kwong KK, Belliveau JW, Hamberg LM, Fordham JA: Advances in clinical neuroimaging: Functional MR imaging techniques. Radio Graphics 13: 889-896, 1993.
- 20) Schneider W, Noll DC, Cohen JD: Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners. Nature 365: 150-153, 1993.
- 21) 成瀬昭二,堀川義治,田中忠蔵:MRIによる脳の機能画像.神経内科 39:487-497,1993.
- 22) 渡辺浩之,桑原武夫,大久保真樹,酒井邦夫,辻 省次,湯浅龍彦:MRIによる脳神経活動の画像化-MR functional brain imaging-. 脳神経 45:941 -944, 1993.
- 23) Fox PT, Raichle ME, Mintun MA, Dence C: Nonoxidative glucose consumption during focal physiologic neural activity. Science 241: 462-464, 1988.
- 24) Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, et al: Lactate rise detected by ¹H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88: 5829-5831, 1991.
- 25) Ogawa S, Lee TM, Kay AR, Tank DW: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868-9872, 1990.
- 26) Ellis SJ: Functional magnetic resonance: neurological enlightenment? Lancet 342: 882, 1993.