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Abstract: Suppressive effects of haloperidol, one of the neuroleptic compounds that acts on 
the transient Na current (INa,t) were studied in freshly isolated 5-10-day-old rat retinal gan- 
glion cells using a whole-cell patch clamp technique. High doses of haloperidol reversibly and 
dose dependently (2-200 ~mol) reduced the peak amplitude of INa,t. The half-inhibition 
dose was 27.1 ixmol. The inactivation curve of INa,t was shifted toward a hyperpolarizing di- 
rection by about 42% when the amplitude was suppressed with 20 ~mol haloperidol. This 
indicates that haloperidol suppression of INa,t is probably affected through changes in the inac- 
tivation of Na channels. Jpn J Ophthalmo11997;41:221-225 © 1997 Japanese Ophthalmolog- 
ical Society 
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Introduction 

A variety of ionic currents contribute to signal 
transduction in retinal ganglion cells 1 and other neu- 
rons. In rats, these include the Na current (INa), the 
Ca current, K currents (IK, IA), and Ca-activated K 
current. 2 Although there are two subtypes of INa, 
transient (INa,t) and persistent (INa,p), rat retinal 
ganglion cells have only INa,t, 1,2 the major ionic 
current involved in the rising phase of an action po- 
tential. 3 

Recent advances in molecular biology and bio- 
physics revealed the structure and modulation of Na 
channels by neurotoxins, 4 local anesthetics, or anti- 
arrhythmic agents. 5 However, most of these studies 
used peripheral nerve fibers and brian neurons. 
There are few studies of the effects of these chemi- 
cals, except for tetrodotoxin, 2 on the Na channels of 
the retinal cells. Although haloperidol is well known 
as a dopamine antagonist, 6 it has been reported that 
haloperidol suppressed INa,t in isolated mammalian 
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central neurons and peripheral nerves at a higher 
dose than required to antagonize dopamine recep- 
tors. 7-9 In isolated retinal ganglion cells, dopamine 
receptor antagonists, such as haloperidol, spiperone, 
and SCH23390, have been reported to reduce volt- 
age-dependent Ca current by a mechanism unrelated 
to dopamine receptors, 1° but there have been no re- 
ports on the effects of these agents on INa,t. In the 
present study, we investigated the effects of halo- 
peridol on INa,t in morphologically identified 
acutely dissociated rat retinal ganglion cells. 

Materials and Methods 

Dbssociation o f  Ganglion Cells 

Sprague-Dawley rats of both sexes, 5-10 days old, 
were used for the study. Animals were handled in ac- 
cordance with the ARVO resolution on the use of 
animals in vision and ophthalmic research. Two to 
four days before the recording, 1 p~L of 2% Dil (1,1'- 
dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine per- 
chlorate, Molecular Probes, Eugene, OR, USA) dis- 
solved with dimethyl sulfoxide (DMSO) or 5% Fast 
Blue (FB, Sigma, St. Louis, MO, USA) dissolved in 
distilled water, was injected bilaterally into the supe- 
rior colliculus of cryoanesthetized rats using a mi- 
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Figure 1. Fluorescent photomicrograph: isolated retinal 
ganglion cell retrogradely labeled with DiI in 6-day-old rat. 
Bar = 20 p,m. 

crosyringe, as reported previously. 2,11,12 The injected 
fluorescent dyes were transported to the retinal gan- 
glion cells by retrograde axonal flow within 48 hours. 

On the recording day, again under deep cryoanes- 
thesia, the eyes of the rats were enucleated and he- 

misected. The retina was isolated from the vitreous 
body and the pigment epithelium and sclera were cut 
into small pieces under a dissecting microscope. Fol- 
lowing enzymatic treatment in O2-bubbled Hanks' 
solution containing papain (3-5 U/mL, Worthington, 
Freehold, NJ, USA) and cysteine (0.1 mg/mL, Sigma, 
St. Louis, MO, USA) for 60 minutes at 31°C, and rins- 
ing with Hanks' solution, retinal cells were dissoci- 
ated by gentle trituration with a Pasteur pipette, 11,13 

Dissociated cells were plated on Concanavalin A- 
coated dishes (Sigma, St. Louis, MO, USA) filled 
with a standard solution (in mM): NaC1 135, KC1 5, 
CaC12 1, MgC12 1, HEPES 5, Glucose 10, maintained 
at 4°C until recording. The dissociated ganglion cells 
were observed and identified under an epifluorescent 
microscope (Axioskop, Carl Zeiss, Oberkochen, 
Germany) with differential interference contrast op- 
tics. Dil-labeled ganglion cells were identified before 
recording with the G filter of the epifluorescent mi- 
croscope. FB-labeled cells were observed after re- 
cording with the V filter to prevent damage to the 
cells. 

Electrophysiological Recording 
Borosilicate glass pipettes (1.5 mm OD) had resis- 

tances of 5-8 mollq when filled with the following so- 
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Figure 2. (A) Transient inward currents evoked at -20 mV with a Vh of -90 mV before and after application of 1 p, mol 
TTX. The effect of TFX was reversible (washout). (B) Current-Voltage relationship of transient inward current (INa,t). 
Peak amplitude of transient inward currents was plotted against the membrane potential. 
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lution (in mmol): CsC1 110, NaC1 10, CaCI 2 0.5, 
EGTA 5, and HEPES 10, adjusted to pH 7.2 with 
CsOH. Sylgard was used to minimizing stray capaci- 
tance. The tip of the pipette was heat-polished to al- 
low gigaseal formation more easily. The recording 
bath was superfused continuously at 1.0 mL/minute 
and grounded by an Ag-AgC1 indifferent electrode. 
To isolate INa,t, the perfusate included (in mmol): 
NaC1 101, CaC1 5, MgC12 1, CaCI2 2, HEPES 5, glu- 
cose 10, TEA-C1 30, CoCI 2 4, and 0.01% bovine se- 
rum albumin (Sigma, St. Louis, MO, USA) main- 
tained at pH 7.4 with CsOH. 11 After rupturing the 
membrane patch under the pipette tip, ionic currents 
were recorded in the whole-cell configuration 14 at a 
holding potential (Vh) of - 90  mV, using a patch- 
clamp amplifier (AXOPATCH 200A, Axon Instru- 
ments, Foster City, CA, USA) with a low-pass filter 
of 5 kHz and an on-line simultaneous recording and 
stimulating system (pCLAMP, Axon Instruments). 
Leak currents were subtracted from the recorded 
currents using scaled currents obtained by averaging 
four pulses of opposite polarity. Recording was done 
at room temperature; data were analyzed by the 
Mann-Whitney test. 

Drug Appfication 
Haloperidol (Sigma, St. Louis, MO, USA: final 

concentration, 2-200 i~mol) was initially dissolved 
with DMSO. Before studying the effects of haloperi- 
dol, we verified that DMSO (final concentration in 
perfusate - 1%) had no effect on INa,t. Recording 
and perfusing systems were shielded from light to 
prevent the degeneration of the drugs. 

Results 
Because most of the dissociated ganglion cells did 

not have complete neurites due to the trituration 
procedure, we confirmed the identification of the 
retinal ganglion cells by retrograde transport of Dil 
or FB. The recorded cells were round or ovoid with a 
smooth surface. The present data were derived from 
nine DiMabeled (Figure 1) and 47 FB-labeled cells. 

Transient inward currents were examined in 56 
cells by a 50-millisecond step command (-140 to +90 
mV; Vh, - 90  mV). One of these was identified as 
INa,t: It was observed when Ca and K currents were 
suppressed by Co 2+, Cs ÷, and TEA in the perfusate 
and Cs ÷ in the pipette, and was reversibly blocked 
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Figure 3. (A) INa,t recorded by step com- 
mand of -20 mV from a Vh of -90 mV 
before and after application of 1% 
DMSO. (B) INa,t induced by depolarizing 
pulse of -20 mV from a Vh of -90 mV. 
Peak current was suppressed by 42% after 
application of 20 t~mol haloperidol. INa,t 
was recovered to 84% control value after 
washout of haloperidol. (C) INa,t re- 
corded by step command of -20 mV from 
a Vh of -90 mV in the other cell. Halo- 
peridol (100 ixmol) reversibly suppressed it 
by 91%. Right scales apply to (B) and (C). 
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by the 1 I~mol tetrodotoxin (TTX) 15 (Figure 2A). 
The evoked current showed a voltage and time de- 
pendence similar to the INa,t reported in rat retinal 
ganglion cells by Lipton and Tauck 2 (Figure 2B). 
The averaged peak amplitude of the current was 
-1.7 _ 0.7 nA (mean - SD). 

Although INa,t was not influenced by DMSO, 
alone, added to the perfusate (Figure 3A), 20 txmol 
haloperidol dissolved in DMSO reduced the peak 
amplitude that was evoked by a step command from 
-90  mV to -20  mV (42%) (Figure 3B). The INa,t 
returned to the control level after washout of the ha- 
loperidol. The depression of INa,t by 20 txmol halo- 
peridol averaged 41.7 ___ 5.4% (n = 7). The INa,t ac- 
tivated at -20  mV was reversibly depressed by 89% 
with 100 ixmol haloperidol (Figure 3C). 

We studied the effects of haloperidol in INa,t at 
various doses: 2 (n = 3), 10 (n = 7), 50 (n = 6), 100 
(n = 4), and 200 txmol (n = 1). Figure 4 plots the ra- 
tio of the peak amplitude of INa,t in haloperidol 
compared to the control at various doses. The dose 
response curve fit well with Hill's equation: 

I/Imax = 1 - xn/(x n + )~;0) 

in which x is the dose of haloperidol, n is the Hill co- 
efficient (n = 1.3), and ×50 is the half-inhibition dose 
(Xs0 = 27.1 txmol). 

Figure 5 shows the steady-state inactivation curves 
of INa,t obtained in control and haloperidol-contain- 
ing solutions. Both curves fit well with Boltzmann's 
equation: 

I/Imax = 1/{ 1 + exp(x-  X50)/k }, 

where ×50 is the potential at which the current is half- 
inactivated and k is a factor describing the steepness 
of the inactivation curves. In the control solution, ×50 
was -40.4 mV and k was 4.5. The inactivation curve 
of INa,t was similar to that reported by Lipton and 
Tauck. 2 Haloperido120 txmol shifted the curve to the 
left, a hyperpolarizing direction, by 15.5 mV. In five 
cells, the half-inactivation potential shifted signifi- 
cantly (P < 0.01) from -42.5 - 4.9 mV to -56.0 + 
5.6 mV in response to the haloperidol. 

Discussion 
This study revealed the inhibitory action of halo- 

peridol on INa,t in rat retinal ganglion cells. A con- 
centration of 27 ixmol produced half inhibition in 
this experiment. This is one-third of the concentra- 
tion found in isolated rat brain neurons 7 and about 
20 times that in rat peripheral nerve fibers. 8,9 

Neuroleptic compounds such as haloperidol and 
chlorpromazine are believed to block dopamine 
(D1, D2) receptors. 6 The IC50 (concentrations pro- 
ducing a 50% blockade of drug binding) of haloperi- 
dol and chlorpromazine, in antagonizing D1 and D2 
receptors were 1.2 nmol and 29 nmol, respectively. 
These are nearly equal to the serum concentration of 
free haloperidol used in the treatment of schizophre- 
nia patients, 6 but they are much lower than the IC50 
of haloperidol that produced INa,t inhibition in our 
experiment. 
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Figure 4. Dose response curve: haloperidol depression of 
peak current of INa,t. Suppressive effects were evaluated 
by relative INa,t to the amplitude of the control current. 
Points and bars indicate the mean values and standard de- 
viations, respectively. Number of cells examined is shown 
in parenthesis. Plotted points fit well with Hill's equation. 
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Figure  5. Inac t iva t ion  curve of  INa, t  be fore  (11) and  af ter  
(0) application of 20 Fmol haloperidol. Abscissa repre- 
sents conditioning prepulse of 450 milliseconds duration; 
Ordinate is peak amplitude of INa,t induced by the test 
pulse up to -20 mV normalized to the maximal value of 
INa,t. In both cases the plotted points fit well with Boltz- 
mann's equation. 
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Dopamine receptors are localized in the ganglion 
cell layer of the adult rat retina. 16 Endogenous 
dopamine is, however, first observed histochemically 
in 10-day-old rats 17 but dopamine receptors are not 
yet completely established on the retinal ganglion 
cells of 5-10-day-old rats} ° Therefore, this study 
may refute the theory that suppression of the Na 
current is mediated by dopamine receptors in rat ret- 
inal ganglion cells. Guenther et al 1° also reported 
that haloperidol reduced Ca currents without dopa- 
mine receptors mediating the response. Their dose- 
dependence data were similar to ours. 

Reduction of the amplitude of INa,t by haloperi- 
dol shifted the inactivation curve in the hyperpolar- 
izing direction. This shift has been reported both in 
brain neurons 7 and peripheral nerve fibers, s leading 
us to conclude that haloperidol, like local anesthet- 
ics, affects the process of inactivation of INa,t. 
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