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Purpose:

 

To investigate the expression of nitric oxide synthase (NOS) in the ischemic retina.

 

Methods:

 

Retinal ischemia was induced in rats by bilateral common carotid artery occlusion
(BCCAO) for various lengths of time. Using the retina after BCCAO, expression of neu-
ronal NOS (nNOS) and inducible NOS (iNOS) and identification of their positive cells were
studied by histological and immunohistochemical examinations.

 

Results:

 

Histological examinations revealed significant reduction in the thickness of the in-
ner plexiform layer and the outer plexiform layer of the retina. Expression of nNOS was de-
tected in retinal ganglion cells, amacrine cells, and Müller cells after BCCAO. The expres-
sion of nNOS and iNOS detected in Müller cells became stronger and persisted long after
BCCAO.

 

Conclusions:

 

In the ischemic retina, Müller cells and retinal ganglion cells expressed nNOS
and iNOS. These phenomena may be involved in the ischemic damage to the retina.
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Introduction

 

Ocular ischemic syndrome is induced by occlusion
or stenosis of the carotid artery and causes ischemic
changes of the eye, particularly in the retina, result-
ing in visual impairment. Common causes of ocular
ischemic syndrome include sclerosis, inflammation,
and injury of the carotid artery.

 

1–3 

 

The mechanisms
by which retinal ischemia causes tissue damage to
the retina are still unknown.

In the brain, however, recent studies using animal
models of cerebral ischemia indicate significant in-
volvement of nitric oxide (NO) in the neuronal dam-
age to the central nervous system.

 

4–7

 

Nitric oxide is produced when L-arginine is
changed to L-citrulline by nitric oxide synthase
(NOS).

 

8,9

 

 Nitric oxide has a variety of biological ac-

tivities, which include relaxation of the blood ves-
sels,

 

10

 

 cytotoxic activities,

 

11

 

 and functions as a neu-
rotransmitter in the central and peripheral nervous
systems.

 

12,13

 

 Because of the very short half-life of
NO, its production is evaluated by measuring NOS
using immunohistochemical techniques or in situ hy-
bridization.

 

12,14–17

 

 High expression of NOS was dem-
onstrated in the ischemic brain, particularly in the
hippocampus. The hippocampus is known to be
highly susceptible to ischemia and to exhibit degen-
erative changes.

 

18

 

 Furthermore, administration of
NOS inhibitor protected the degenerative changes of
the hippocampus in animals with brain ischemia.

 

19

 

These data on the brain from previous studies sug-
gest a significant involvement of NO in tissue dam-
age to the ischemic brain.

 

4–7

 

 Therefore, it is sug-
gested that NO also plays a role in the tissue damage
to the ischemic retina.

 

20–22 

 

However, no studies have
investigated the distribution of NOS in the ischemic
retina.

The present study was aimed at investigating the
expression of NOS isoforms, neuronal NOS (nNOS)
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and inducible NOS (iNOS), in the retina of a rat
model of ocular ischemic syndrome with cerebral
chronic hypoperfusion.

 

23–26

 

Materials and Methods

 

Animals

 

An inbred strain of Wistar rats (males, 7 weeks
old) were purchased from Sankyo Lab Service (Shi-
zuoka). The animals were kept in a room on a 12-hour
light–dark cycle. All investigations were conducted
in accordance with the Association for Research in
Vision and Ophthalmology (ARVO) Statement on
the Use of Animals in Ophthalmic and Vision Re-
search.

 

Surgical Procedure

 

After inducing deep anesthesia in the experimen-
tal animals with intramuscular injection of ketamine
(250 mg/kg), the bilateral common carotid arteries
were exposed via a midventral incision and occluded
with 3-0 silk sutures. These animals were designated
as the bilateral common carotid artery occlusion
(BCCAO) group. Rats receiving a sham operation
served as controls. In the sham operation, occlusion
of common carotid arteries was not performed, but
all other surgical procedures were the same as in the
BCCAO group.

A total number of 91 rats were used in the experi-
ment (77 rats in the BCCAO group and 14 rats in the
control group). Rats of the BCCAO group were sac-
rificed at one, 3, 6, 12, and 24 hours and 3 days (5
animals at each time interval), 1 week (n 

 

5 

 

9), and
1, 2, 4, and 6 months (6 animals at each time inter-
val) after surgery. Control rats were sacrificed at 1
week (n 

 

5

 

 6) and 4 months (n 

 

5 

 

8) after the sham
operation.

Immediately after surgery, the ocular blood flow
at the posterior pole of the fundus was evaluated us-
ing a laser Doppler flowmeter (TBF-LN 1 Unique,
Tokyo) with a 0.5-mm-diameter laser Doppler
probe.

 

27

 

 Regional cerebral blood flow was measured
1 hour before the sacrifice of animals using a stan-
dard inhalation hydrogen clearance method as de-
scribed previously.

 

28

 

Tissue Processing

 

At each time interval after the surgery described
earlier, animals were deeply anesthetized with intra-
muscular injections of ketamine (250 mg/kg) and
were perfused transcardially with 0.2 mol/L phos-

phate buffer (PB) followed by a fixative consisting of
4% (w/v) paraformaldehyde in 0.1 mol/L PB (pH
7.4). After confirming that the rats were dead after
the perfusion, both eyes were enucleated and im-
mersed in a fixative solution for 6 hours. One eye of
each animal was used for histological studies and the
other eye was used for immunohistochemical studies.

Eyes for histological studies were embedded in
paraffin and cut at 5-

 

m

 

m thickness using a micro-
tome. Eyes for immunohistochemical studies were
incubated at 4

 

8

 

C in 7% (w/v) sucrose in PB for 6
hours, 10% sucrose in PB overnight, 15% sucrose in
PB for 6 hours, and 20% sucrose in PB overnight.
Eyes were then embedded in OCT compound (Tis-
sue-Tek; Miles, Naperville, IL, USA) and quickly
frozen in acetone and dry ice. The frozen eyes were
cut at 5-

 

m

 

m thickness parallel to the horizontal me-
ridian using a cryostat (Leica 8400E; Leica, Tokyo).
Sections for histology and immunohistochemistry
were mounted on glass slides coated with 2% silane.

 

Histology

 

Paraffin-embedded sections of the rat eyes were
stained with hematoxylin-eosin and examined by
light microscopy. The thicknesses of the inner plexi-
form layer, inner nuclear layer, and outer plexiform
layer were measured with the aid of a micrometer in
a standard area located at the temporal retina, 200

 

m

 

m distant from the optic disc. The measurement
was performed in a masked fashion. The thickness of
each layer of the retina was compared between the
BCCAO group and the control.

The statistical analysis was carried out using Stu-
dent’s 

 

t

 

-test.

 

Primary Antibodies

 

The following primary antibodies were used: rab-
bit polyclonal antibodies against rat brain NOS
(bNOS, same as nNOS) (1:800; Wako, Osaka), and
rabbit polyclonal antibodies against mouse iNOS
(1:500; Wako); mouse monoclonal antibodies against
rat 200-K neurofilament (NF) (1:1000; Transforma-
tion Research, Framingham, MA, USA) were used
to identify the retinal ganglion cells

 

29

 

 and amacrine
cells;

 

30

 

 mouse monoclonal antibodies against rat vi-
mentin (1:100; Dako Japan, Kyoto) were used to
identify Müller cells.

 

31

 

Immunohistochemistry

 

The frozen sections were immersed in 0.01 mol/L
phosphate buffered saline (PBS) (3 times for 5 min-
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utes each), incubated with normal goat serum (Vec-
tor Lab, Birmingham, CA, USA) in a humid cham-
ber at room temperature for 30 minutes and then
incubated with the primary antibodies in a humid
chamber at 4

 

8

 

C overnight. The sections were washed
in PBS (3 times for 5 minutes each) and incubated
with a secondary antibody, fluorescein isothiocyan-
ate (FITC)-conjugated goat anti-rabbit IgG (1:100;
Jackson, West Baltimore, MD, USA) for 1 hour at
room temperature. Some sections were immun-
ostained using avidin-biotinylated enzyme complex
methods. Namely, after the frozen sections were in-
cubated with normal goat serum and the primary
antibodies, the sections were incubated with biotiny-
lated rabbit anti-goat IgG antibodies for 1 hour at
room temperature, then with avidin-biotin peroxi-
dase complex (Vector Lab) for 1 hour at room tem-
perature. After each incubation, the sections were
washed with PBS. The peroxidase in the tissue was
visualized with a mixed solution of 0.05% 3.3

 

9

 

-di-
amino-benzidine tetrahydrochloride and 0.01%
H

 

2

 

O

 

2

 

 in 0.05 mol/L Tris HCl buffer (pH 7.5).
To identify the cells positive for nNOS or iNOS, a

double-immunostaining was performed as follows.
First, the frozen sections were incubated with the
primary antibodies against nNOS or iNOS, then in-
cubated with the secondary antibodies of a fluores-
cein (FITC)-conjugated goat anti-rabbit IgG (1:100).
Second, the sections were incubated with another
primary antibody against 200-K NF or vimentin, and
incubated with another secondary antibody, that is,
Texas Red-conjugated rabbit anti-mouse IgG anti-
body (1:50; Cappel, Aurora, OH, USA).

These sections were mounted using Slow Fade
Light Antifade kit components (Molecular Probes,
Eugene, OR, USA). Immunostained sections were
examined with a light and fluorescence microscope
(Nikon, Tokyo) and a confocal laser scanning micro-
scope (TCS NF, Leica, Tokyo).

 

Results

 

Fourteen of the 77 (18.2%) rats in the BCCAO
group died during the experiments, while none of
the control rats died. Animal behavior was carefully
observed during the experiments. There were no dif-
ferences in motion behavior and feeding behavior
between the control group and the BCCAO group.
In addition, there was no difference in the body
weight between the two groups. To confirm if the oc-
ular blood flow was maintained even after BCCAO,
the blood flow in the ocular fundus was measured by

a laser Doppler flow meter. The percent laser Dop-
pler flowmetry results were 15.4 

 

6

 

 2.9% (mean 

 

6

 

SD) and 26.7 

 

6

 

 1.1% at 1 minute and 3 hours after
BCCAO, respectively. The cerebral blood flow mea-
sured by hydrogen clearance methods was 83.3 

 

6

 

11.8 mL/100 g brain per minute in the control group.
At 1 hour, 3 hours, 3 days and 4 months after BC-
CAO, respectively, they were 29.7 

 

6

 

 7.16 (36% of
control), 25.2 

 

6

 

 9.57 (30%), 38.8 

 

6

 

 8.48 (47%) and
43.9 

 

6

 

 12.8 (53%) mL/100 g brain per minute.

 

Histology

 

Histological examination disclosed degenerative
changes of the entire retina in rats of the BCCAO
group. The degenerative changes became more in-
tense with time as demonstrated by a decrease in the
number of retinal ganglion cells and in the thickness
of the retina (Figures 1 and 2). One week after the
surgery, the inner plexiform layer and outer plexi-
form layer in the BCCAO group were significantly
thinner than those of the control group (Figure 2)
(

 

P

 

 

 

,

 

 .005). Four months after the surgery, all three
layers of the retina were significantly thinner in the
BCCAO group than in the control group (Figure 2).

 

Immunohistochemistry for NOS

 

Immunoreactivity for nNOS was detected in the
cells in the ganglion cell layer both in the control
group and in the BCCAO group; the immunoreac-
tivity was more intense in the BCCAO group (Fig-
ure 3). The cells positive to nNOS were identified as
retinal ganglion cells because the cells were immu-
noreactive to 200-K NF by double-immunostaining
(Figure 4). The immunoreactivity for nNOS was also
found in amacrine cells at an early stage (1 hour to 3
days) after BCCAO (Figure 4), but no or minimum
immunoreactivity for nNOS was found in Müller
cells of the retina at this early stage (Figure 4, left).
However, intense immunoreactivity for nNOS was
found in Müller cells 1 week after BCCAO (Figure
5) and until 6 months afterward (Figure 6).

The immunoreactivity for iNOS was detected at
the ganglion cell layer both in the control group and
in the BCCAO group as early as 1 hour after sur-
gery; the immunoreactivity for iNOS was much
stronger in the BCCAO group (Figure 7). The cells
positive to iNOS were immunoreactive for 200-K NF
(Figures 8a,b) and vimentin (Figures 8c,d), indicat-
ing that retinal ganglion cells and Müller cells ex-
press iNOS. The immunoreactivity for iNOS in
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Figure 1. Light micrograph of rat retina, stained with hematoxylin and eosin (left). Control rat (right); 4 months after bilat-
eral common carotid artery occlusion (BCCAO). IPL: inner plexiform layer, INL: inner nuclear layer, OPL; outer plexi-
form layer, ONL: outer nuclear layer. Thickness of IPL, INL, and ONL was much less in rats after BCCAO than in control
rats. Bar 5 10 mm.

Figure 2. Comparison of thickness of inner plexiform layer (IPL), inner nuclear layer (INL), and outer plexiform layer
(OPL) in retinas of control rats and bilateral common carotid artery occlusion (BCCAO) rats at 1 week (left) and 4 months
(right) after surgery. h: control group, j: BCCAO group. *P , .025; **P , .005; P , .0005.
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Müller cells became stronger at one week after BC-
CAO (Figure 9) and remained so for 6 months.

 

Discussion

 

The present study demonstrated histopathological
changes and significant expression of NOS isoforms
in the ischemic retina. The ischemic condition of the
retina in the present study was induced by surgical
occlusion of bilateral carotid arteries in the rat.
There are several experimental methods to induce

ischemic retina, such as by (1) increasing the intraoc-
ular pressure by continuous perfusion of the anterior
chamber in the rabbit,

 

32

 

 (2) surgical occlusion and
reperfusion of the common carotid artery in the
Mongolian gerbil,

 

27,33

 

 and (3) surgical permanent oc-
clusion of the bilateral common carotid arteries in
the rat,

 

22–25

 

 as in the present study. Because the
present study was aimed at investigating the expres-
sion of NOS isoforms in an experimental model of
ocular ischemic syndrome, it is essential to cause
chronic cerebral hypoperfusion. To achieve this con-

Figure 3. Light micrograph of rat retina from control group (left) and 3 hours after bilateral common carotid artery occlu-
sion (right) immunostained for neuronal nitric oxide synthase (nNOS) using avidin-biotin peroxidase complex method. Im-
munoreactivity for nNOS was observed in cells in ganglion cell layer. Bar 5 10 mm.

Figure 4. Confocal laser scanning micrograph of rat retinas 1 hour after bilateral common carotid artery occlusion, double-
immunostained for neuronal nitric oxide synthase (nNOS) (left) and for 200-K neurofilament (NF) (right). Immunoreactivity
for nNOS was observed in cells (arrows) in ganglion cell layer and inner nuclear layer in retina. These cells were identified
with retinal ganglion cells and amacrine cells, which were also immunoreactive for 200-K NF (arrowheads). Bar 5 10 mm.
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dition, the high intraocular pressure attained by an-
terior chamber perfusion is not adequate. Further-
more, because of the anatomical structure of the
blood vessels in the central nervous system of the
Mongolian gerbil, permanent surgical occlusion of
the bilateral common carotid arteries in the Mongo-

lian gerbil causes complete termination of the blood
supply to the forebrain and 40–60% of animals die
shortly after the surgery.

 

34–37

 

 Therefore, the Mongo-
lian gerbil model can be used as a transient ischemia
and reperfusion model.

 

27,38

 

 The present experiment
demonstrated that the blood flow after BCCAO was

Figure 5. Confocal laser scanning micrograph of rat retinas at 1 week after bilateral common carotid artery occlusion, dou-
ble-immunostained for neuronal nitric oxide synthase (nNOS) (left) and vimentin (right). Immunoreactivity for nNOS was
clearly observed in Müller cells (arrows) which were positive for vimentin (large arrows). Surviving retinal ganglion cells
were also immunoreactive for nNOS (arrowhead). Bar 5 10 mm.

Figure 6. Confocal laser scanning micrograph of rat retinas 6 months after bilateral common carotid artery occlusion, dou-
ble-immunostained for neuronal nitric oxide synthase (nNOS) (left) and vimentin (right). Immunoreactivity for nNOS was
observed in Müller cells (arrows) which were positive for vimentin (large arrows). Bar 5 10 mm.
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30–53% of the control in the brain and 16–27% of
the preoperative condition in the eye. This indicates
that the blood supply was maintained long after BC-
CAO in the rat. Due to this level of blood supply to
the eye and to the brain, experimental animals main-
tained their vision judged by the criteria of animal
behavior and only 18.2% of the animals died during
the experiments. Thus, the present experimental
method is considered to be adequate to induce
chronic hypoperfusion of the eye and ischemic retina
as a model of ocular ischemic syndrome.

Using this experimental model, the data recorded
here indicate that hypoperfusion of the eye causes
degenerative changes and high expression of nNOS
and iNOS in the ischemic retina. Histological exami-
nations revealed a decrease in the number of retinal
ganglion cells and in the thickness of the inner plexi-
form layer, the inner nuclear layer, and outer plexi-
form layer after BCCAO. The degenerative changes
in the retina progressed with time. Immunohis-
tochemical examinations showed high expression of
nNOS in the retinal ganglion cells and in the ama-
crine cells shortly after BCCAO, but not in the
Müller cells. High expression of nNOS in the Müller
cells was detected 1 week after BCCAO and re-
mained for as long as 6 months. The expression of
iNOS was detected in the retinal ganglion cells and

in the Müller cells shortly after BCCAO, but the ex-
pression of iNOS in the Müller cells became stronger
1 week after BCCAO and the high expression re-
mained for 6 months. These data suggest that the isch-
emic condition of the eye induced by BCCAO causes
the activation of the Müller cells. The Müller cells are
glial cells

 

30,37

 

 and there is experimental evidence in-
dicating that BCCAO causes the activation of glial
cells in the central nervous system. It was demon-
strated following BCCAO that (1) the expression of
major histocompatibility complex (MHC) antigen
class I, class II, and leucocyte common antigen was
upregulated at the microglia; (2) the expression of
glial fibrillary acidic protein (GFAP) was also upreg-
ulated at the astroglia; and (3) the activation of these
glial cells persisted as long as 90 days after BC-
CAO.

 

38

 

 In the eye, Müller cells did not express
GFAP under normal conditions,

 

39

 

 but our unpub-
lished data disclosed that Müller cells expressed
GFAP after BCCAO and the expression became
stronger with time after BCCAO.

Therefore, it is suggested that the activation of
glial cells occurs in the ischemic retina and may be
involved in the process of tissue damage in the isch-
emic retina.

In bacterial infection, a high expression of iNOS
was detected in macrophages, which produced large

Figure 7. Light micrograph of rat retina from control group (left) and 1 hour after (right) immunostaining for inducible ni-
tric oxide synthase (iNOS) using avidin-biotin peroxidase complex method. Immunoreactivity for iNOS was observed in
cells in innermost retina. Bar 5 10 mm.
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amounts of NO and contributed to the elimination of
the infectious agents.

 

40

 

 It was also reported that
Müller cells expressed high levels of iNOS and pro-
duced a large amount of NO in vitro.

 

41

 

 Based on
these previous observations, the high expression of
nNOS and iNOS in the Müller cells is considered to
contribute to the process of retinal degeneration of
the ischemic retina after BCCAO. However, the
mechanism by which the NOS expressed in the
Müller cells and in the retinal ganglion cells causes

tissue damage to the ischemic retina remains to be
elucidated.
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Figure 8. Confocal laser scanning micrograph of rat retinas 3 hours after bilateral common carotid artery occlusion (BC-
CAO), double-immunostained for inducible nitric oxide synthase (iNOS) (a) and 200-K neurofilament (NF) (b). Immu-
noreactivity for iNOS was observed in retinal ganglion cells (arrows) and Müller cells (arrowheads) in retina. Müller cells
were negative for 200-K NF while retinal ganglion cells were positive for 200-K NF (large arrows). Confocal laser scanning
micrograph of rat retinas 3 hours after BCCAO, double-immunostained for iNOS (c) and vimentin (d). Immunoreactivity
for iNOS was observed in Müller cells (arrows) that were positive for vimentin (arrowheads) in retina. Bar 5 10 mm.
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